

Pacific Operational Science & Technology Conference

2-4, April 2007

Honolulu, HI

Agenda

Tuesday, 3 April 2007

Current Theater Environment – FY07-FY09

HQ USPACOM

- USPACOM J2, "Intelligence Prospective", RADM Andrew M. Singer, USN, Director for Intelligence, J2, US Pacific Command
- USPACOM J4, "Logistics, Engineering, and Security Assistance (J4)", Brigadier General Kenneth S. Dowd, USA, Director for Logistics, Engineering and Security Assistance, J4, US Pacific Command

Homeland Security Perspective:

• Department of Homeland Security, "DHS Science & Technology: Alignment for Success", Rear Admiral, (Retired), Jay Cohen, USN, Under Secretary for Science & Technology

International Perspective:

- Australia, "Current Theatre Environment An Australian Perspective", Dr. Roger Lough, Chief Defense Scientist, Defence Science and Technology Organization
- Singapore, "Security challenges from the perspective of a small city state", Rear Admiral (Retired) Richard Lim, Chief Executive, Defence Science and Technology Agency
- Republic of Korea, "Perspective on S&T Collaboration", Dr. Tae In Choi, Vice President, Agency for Defense Development

Banquet w/Special Guest Speaker:

"Breakthroughs, the Product of Innovators", Mr. Burt Rutan

Wednesday, 4 April 2007

Near Term Solutions to Current Challenges - How the World will Change: FY07-FY09

Military Services Research and Development

- Army Research and Development, "Army Science & Technology Overview", Dr. Thomas H. Killion, Deputy Assistant Secretary for Research & Technology/Chief Scientist, Department of the Army.
- Navy Research Enterprise, "Naval Science and Technology Update", Rear Admiral William E. Landay, III, USN, Chief Naval Research
- Air Force Research and Development, "Solutions to Current Challenges: FY07-FY09", Major General Ted F. Bowlds, USAF, Commander, Air Force Research Laboratory

DoD Agency Research and Development

• DARPA, "DARPA Networking and Communications Overview", Dr. Larry B. Stotts, Deputy Director, Strategic Technology Office, DARPA

• OSD/Nuclear, Chemical, Biological, "Nuclear, Chemical and Biological Defense Research and Development", Dr. Thomas Hopkins, Acting Assistant to the Secretary of Defense (NCB)

Lunch w/Guest Speaker:

"Strategic Challenges in the Asia-Pacific Area", Lieutenant General (Retired) E.P. Smith, USA, Director, Asia-Pacific Center for Security Studies

Industry Panel:

Panel Members:

- ISR-UAVs, Future Solutions ISR", Mr. John Grabowsky, VP & GM Small UAVs, AeroVironment
- Maritime Domain Awareness, "Future Industry Solutions....FY10 and Beyond", Mr. Tom Williams, VP Advanced Concepts, Integrated Systems Sector, Northrop Grumman Corporation
- Undersea Warfare, "Undersea Warfare", Mr. Roger Bagbey, SVP & Group Manager Engineering and Technology Center, Alion Science & Technology

Game Changing Technology Panel

Panel Topics:

- Knowledge Management from SA to BDA, "Connecting the Dots", Lieutenant General (Retired) George Fisher, USA, Director, Department of Defense Programs, National Security Directorate, Oak Ridge National Laboratory
- Computational Imaging, "Game Changing Technologies, Computational Imaging Systems", Dr. Timothy Persons, Technical Director, Disruptive Technologies, ONI
- FiberWeb Linear Sensor, "The ATLAS, Powered Rope Ascender", Major Rex Blair, USA and Mr. Nathan Ball, MIT Institute for Soldier Nanotechnologies

Pacific Operational Science & Technology Conference

April 2-4, 2007 Hilton Hawaiian Village Mid-Pacific Conference Center, Coral Ballroom

Pacific Operational Science & Technology Conference

Hilton Hawaiian Village Mid-Pacific Conference Center Coral Ballroom

Monday, April 2, 2007

5:00 PM – 6:30 PM Registration and Ice Breaker Reception

Exhibit Hall, Coral Lounge

5:00 PM – 6:30 PM Exhibits Open, Coral Lounge

Tuesday, April 3, 2007

Coral Ballroom IV

Pacific Theater Environment: Today and Beyond

7:00 AM – 8:00 AM Registration Open / Continental Breakfast

Exhibit Hall, Coral Lounge

7:00 AM – 8:00 AM Exhibits Open

Coral Lounge

7:20 AM Administrative Remarks / Conference Overview

Dr. Charles H. Kimzey, PhD

Science & Technology Advisor, U.S. Pacific Command

7:30 AM Commander's Overview

Lieutenant General Dan Leaf, USAF

Deputy Commander, U.S. Pacific Command

Current Theater Environment – FY07 – FY09

HQ USPACOM

8:00 AM USPACOM J2

RADM Andrew M. Singer, USN

Director for Intelligence, J2, U.S. Pacific Command

8:15 AM USPACOM J3

Brigadier General Martin Post, USMC

Deputy Director for Operations, J3, U.S. Pacific Command

8:30 AM USPACOM J4

Brigadier General Kenneth S. Dowd, USA

Director for Logistics, Engineering and Security Assistance, J4, U.S. Pacific Command

8:45 AM USPACOM J5

Rear Admiral Michael C. Tracy, USN

Director for Strategic Planning & Policy, J5, U.S. Pacific Command

9:00 AM Panel Discussion

Chair: Rear Admiral Michael C. Tracy, USN

Director for Strategic Planning and Policy, J5, U.S. Pacific Command

9:20 AM Break

Coral Lounge

Pacific Operational Science & Technology Conference

Homeland Security Perspective

9:40 AM Department of Homeland Security

Rear Admiral, USN, (Retired), Jay Cohen Under Secretary for Science & Technology

International Perspective

10:10 AM Australia

Dr. Roger LoughChief Defence Scientist

Defence Science and Technology Organization

10:35 AM Singapore

Rear Admiral (Retired) Richard Lim

Chief Executive, Defence Science and Technology Agency

11:00 AM Republic of Korea

Dr. Tae In Choi

Vice President, Agency for Defense Development

12:00 PM Lunch - Coral Ballroom V

Keynote Speaker

Lieutenant General Dan Leaf, USAFDeputy Commander, U.S. Pacific Command

1:30 PM – 7:00 PM Exhibits Open

LISTEN UP! Warfighter's Perspective

1:30 PM CAPT Kirk Brinker, SOCPAC

SGM William Smith, USA, HQ USARPAC G357 EODCS Michael Lentz, USN, EOD MU Five

CSM Elroy Alcivar, USA, RDCOM

SSG Keith Frain, USA, Tripler Army Medical Center

SFC Kevin Kennedy, USA, SOCPAC

SGM Errol Snyder, USA, 1-21 1-21 Infantry, 25th ID SFC Mario Miramontiz, USA, 1-21 Infantry, 25th ID SGM George Garcia, USA, 1-21 Infantry, 25th ID

SMSgt John Anipe, USAF, 25th Air Support Operations Squadron

SSG Tanner Catrett, USA, 706th EOD SSG Brad Joehen, USA, 706th EOD

2:30 PM Panel Discussion

Chair: Sergeant Major William T. Kinney, Senior Enlisted Leader,

U.S. Pacific Command

2:50 PM Break

Coral Lounge

Pacific Operational Science & Technology Conference

"Over The Horizon" Theater Challenges - FY10 and Beyond

3:10 PM Panel Members: General Larry D. Welch, USAF (Retired)

CEO Institute for Defense Analysis and Former Air Force Chief of Staff

General Charles R. Holland, USAF (Retired)

Former Commander, U.S. Special Operations

Admiral Thomas B. Fargo, USN (Retired) *President, Trex Enterprises Corporation and*

Former Commander, U.S. Pacific Command

Panel Chair: General Larry D. Welch, USAF (Retired)

CEO Institute for Defense Analysis and Former Air Force Chief of Staff

5:30 PM Pre-Dinner Social - Exhibit Hall

Exhibit Hall, Coral Lounge

6:00 PM Banquet w/Special Guest Speaker – Mr. Burt Rutan

Coral Ballroom V

Wednesday, April 4, 2007

Solutions to Theater Challenges

Coral Balroom IV

7:00 AM Registration Open / Continental Breakfast

Exhibit Hall, Coral Lounge

7:00 - 8:00 AM Exhibits Open

7:50 AM Administrative Remarks / Program Overview

Dr. Charles H. Kimzey, Science & Technology Advisor

U.S. Pacific Command

Near Term Solutions to Current Challenges - How the World will Change: FY07-FY09

Military Services Research and Development

8:00 AM Army Research and Development

Dr. Thomas H. Killion

Deputy Assistant Secretary for Research & Technology /

Chief Scientist, Department of the Army

8:45 AM Navy Research Enterprise

Rear Admiral William E. Landay, III, USN

Chief of Naval Research

9:30 AM Air Force Research and Development

Major General Ted F. Bowlds, USAF

Commander, Air Force Research Laboratory

10:15 AM Break

Pacific Operational Science & Technology Conference

10:35 AM Panel Discussion -

"How the research community can be more responsive to the Warfighter needs."

Chair: Mr. Vincent Vitto

President & CEO, Charles Stark Draper Laboratory, Inc. and

Vice Chairman, Defense Science Board

DoD Agency Research and Development

11:20 AM DARPA

Dr. Larry B. Stotts

Deputy Director, Strategic Technology Office, DARPA

12:00 PM OSD/Nuclear, Chemical, Biological

Dr. Thomas Hopkins

Acting Assistant to the Secretary of Defense (NCB)

12:30 PM **Lunch w/Guest Speaker** - Coral Ballroom V

"Strategic Challenges in the Asia-Pacific Area"

Lieutenant General E.P. Smith, USA (Ret) Director, Asia-Pacific Center for Security Studies

1:30 PM - 4:00 PM **Exhibits Open**

Future Industry Solutions - FY10 and Beyond

1:45 PM Industry Panel

Panel Members: ISR - UAVs

Mr. John Grabowsky

VP & GM - Small UAVs, AeroVironment

Air & Missile Defense

Mr. Dave Kier

VP & Managing Director - Protection Lockheed Martin Corporation

Maritime Domain Awareness

Mr. Tom Williams

VP Advanced Concepts, Integrated Systems Sector

Northrop Grumman Corporation

Undersea Warfare

Mr. Roger Bagbey

SVP & Group Manager - Engineering and Technology Center

Alion Science & Technology

2:45 PM Panel Discussion

Panel Chair: Dr. Ray O. Johnson

SVP & CTO, Lockheed Martin Corporation

Pacific Operational Science & Technology Conference

Game Changing Technologies - Significant Future Operational Solutions

3:05 PM Game Changing Technology Panel

Panel Topics: Nano Technology - How Small Can You Go?

Dr. Susan E. Durham

Coordinator for Nanotechnology Intelligence Technology Innovation Center

Knowledge Management - from SA to BDA Lieutenant General George Fisher, USA (Retired)

Director, Department of Defense Programs,

National Security Directorate, Oak Ridge National Laboratory

Computational Imaging

Dr. Timothy Persons

Technical Director, Disruptive Technologies, ONI

Directed Energy

Dr. Kirk E. Hackett

Air Force Research Laboratories, Kirtland AFB

FiberWeb Linear Sensor

Major Rex Blair, USA and Mr. Nathan Ball MIT Institute for Soldier Nanotechnologies

Panel Discsusion

Panel Chair: Mr. Vincent Vitto

President and CEO, Charles Stark Draper Laboratory, Inc.

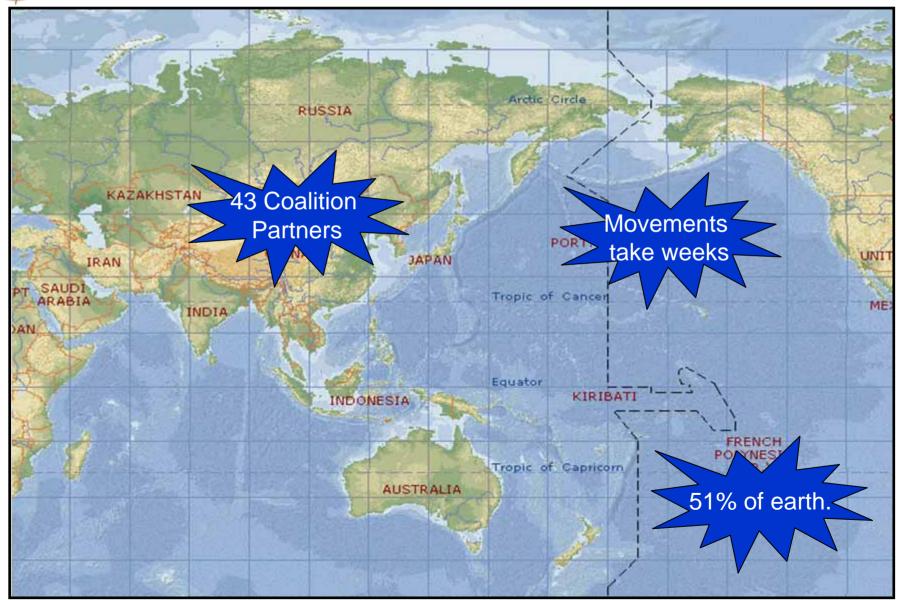
and Vice Chairman, Defense Science Board

4:00 PM Exhibit Hall Closes 4:35 PM Adjourn

LOGISTICS, ENGINEERING, and SECURITY ASSISTANCE (J4)

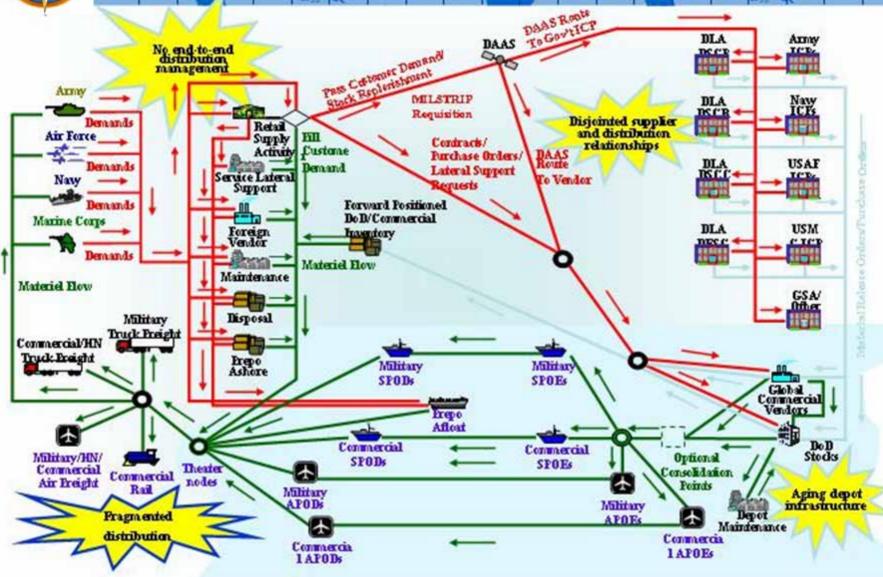
BG Dowd, PhD USPACOM J4 3 APR 2007

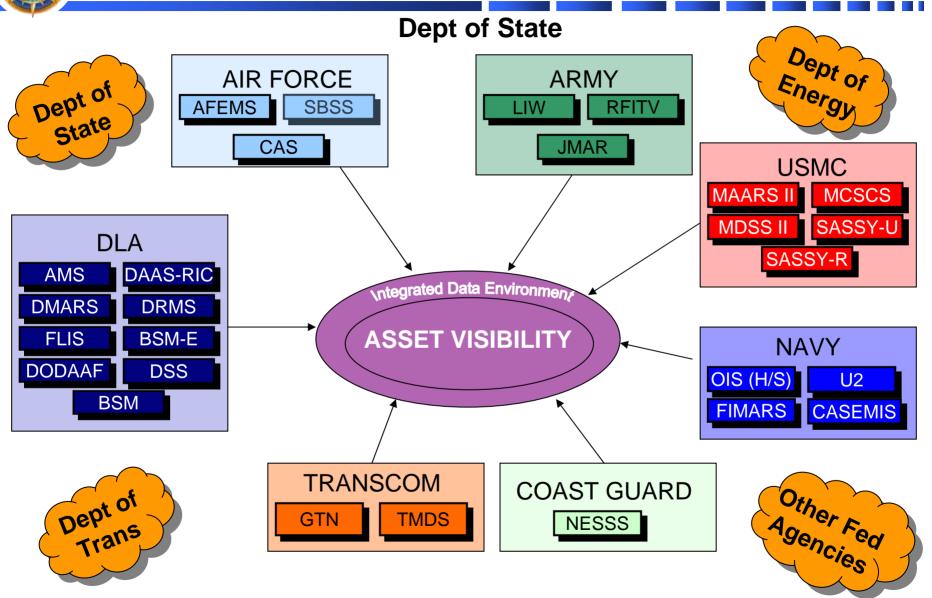
This brief is classified:



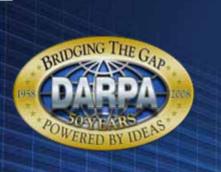
- The Environment
- The Challenge
- Discussion

The Environment




Distribution Challenge

Does not include AFFES, DECA, Mail, FEDEX/DHL, LOGCAP/Contractor!


The Automation Challenge – too many systems

- Money spent on Log Automation \$\$\$.
- Stop Stovepipes
- Joint Funding
- Joint Solutions

BG Dowd, J4 UNCLASSIFIED

DARPA Networking and Communications Overview

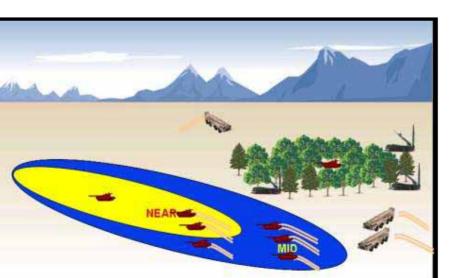
5 April 2007

Dr. David Honey Director, STO 571-218-4247 david.honey@darpa.mil

Dr. Larry Stotts
Dep Dir, STO
571-218-4346
larry.stotts@darpa.mil

Dr. Brian Pierce Dep Dir, STO 703-248-1505 brian.pierce@darpa.mil

Military Operations Structure

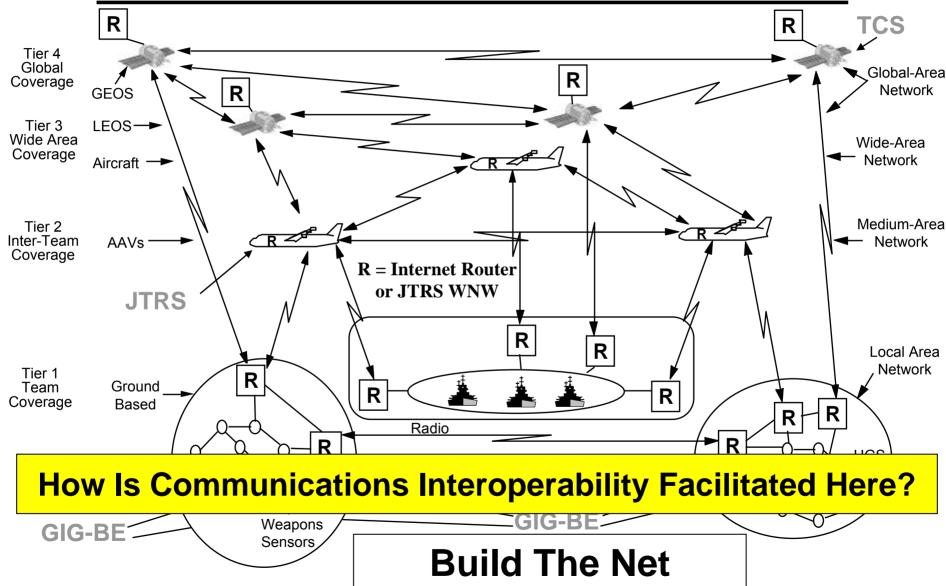

Network Centric Enterprise

Strategic and operational level of deployment and warfare

- Cleared Personnel TS/SCI
- Links air, ground and naval campaigns
- Engages by operational maneuver and strategic strikes
- Provides information, resources, and sustainment connectivity
- Large C4ISR backbone and infrastructure
 - -Rides on GIG and Extensions
 - -Can leverage commercial info systems
 - -IPv6 early adopter
 - -Susceptible to many IA threats

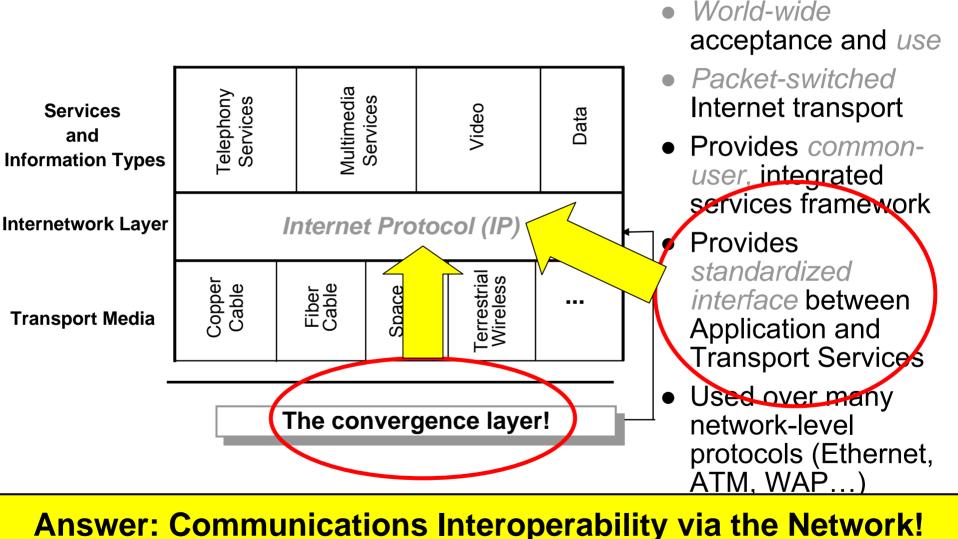
Bridge the Gap

Network Centric Warfare


Tactical level of deployment and warfare

- Uncleared Personnel
- Links effects to targets
- Engages directly with the enemy
- Must be agile, adaptive and versatile
- Minimal, "portable" C4ISR infrastructure
 - -Rides on tactical communications
 - -Requires LPD/LPI transmission security
 - -NCW weapons susceptible to IA attack

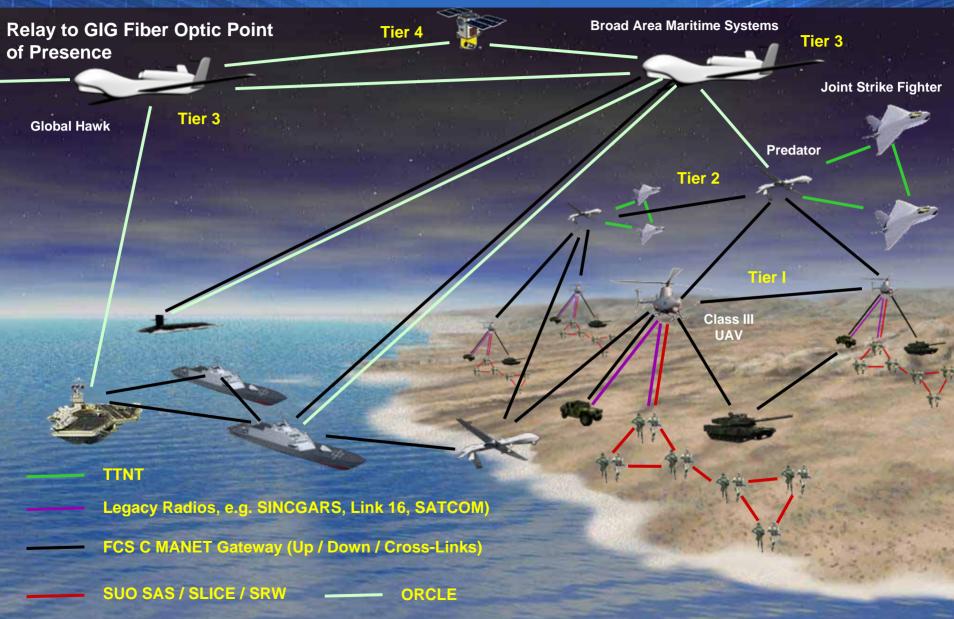
GIG: Transport Layer



GIG: IP Based

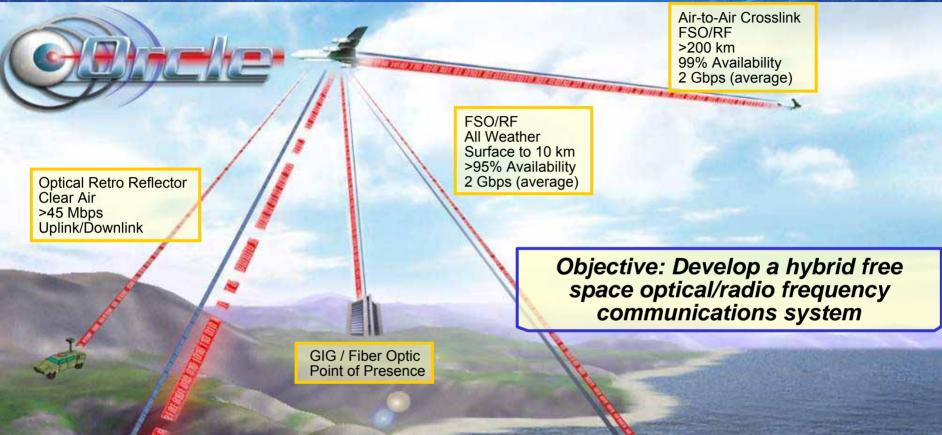


How Do You Make This Happen: Network Gateways



Future Combat Systems Communications Network Centric Demonstration

Possible Architecture Using DARPA Technologies



Optical & RF Combined Link Experiment (ORCLE) Links to forces fixed and on the move

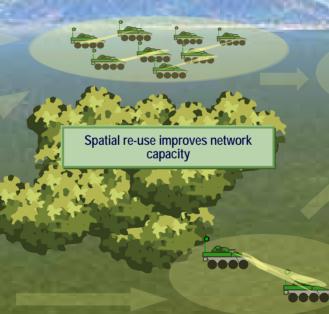
Component and Technology Lab Demos: Complete
Improved Availability Study: Complete
Technology Maturation: Presently
MOA with USAF: Signed Sep 2006
Ground Link and Network Test (Air-Air and Air-Ground): Complete
Air-Air-Ground Flight Demo (Primary Program Goal): Nov 2007

Future Combat Systems Communications

A Dual-Rate, Mobile Ad-Hoc Network for the Maneuver Force

Mobile ad-hoc network dynamically reconfigures during operations to automatically maintain network connectivity

QoS Provides for Adaptive Communications Capabilities


System automatically schedules non-interfering communications for increased network capacity

High Band (JTRS NDL-Like) > 50 Mbps rate high band

Networked vehicles automatically communicate when within range – no manual configuration

Multi-Mode Connectivity Options: GND-to-GND, GND-to-AIR, AIR-to-AIR & AIR-to-GND

Low Band (JTRS WNW-like) > 5 Mbps rate low band

Vehicles automatically leave and join the network – no manual entry

Network Centric Field Experiment at Fort Benning – JAN 2006

FCS Communications Technology Highlights

- <u>Assured high data rate communications:</u> Simultaneous high data rate networked communications in high and low bands. Adaptive data rates 72 Mbps in high band, 10 Mbps in low band. Spatial re-use through directional antennas for increased network throughput.
- High resistance to threat jamming: Directional antennas, supplemented by AV-OFDM waveform in low band and DSSSS in high band. Digital beam forming in low band steers nulls against jammers. Adaptive networking routes traffic around jammers.
- <u>High resistance to threat detectors and intercept:</u> Very narrow directional beams in high band; directional beams in low band, with featureless OFDM waveform.
- <u>Assured multi-path communications:</u> Low band AV-OFDM waveform integrates over frequency and time, outperforms rake receivers at low cost/weight.
- QoS based ad-hoc mobile-mobile networking incorporating the benefits
 of adaptive waveforms and smart antenna technology in both low and
 high bands for improved message throughput in threat and non-threat
 conditions.
- Validated designs validated through relevant field demonstrations air and ground mobile nodes including actual military robotic platforms, airborne nodes, surrogate netfires supplemented by critical laboratory modeling and simulation for validation and scalability.

FCS C Demo 3 Go/No-Go Results

FCS Communications Go/No-Go Metrics	Demo 3 Criteria	Raytheon (FCS-C)
20 Node Average Network Aggregate Throughput (Goodput) Low Band High Band	AJ/LPD HDR 200 Kbps 10 Mbps 1 Mbps 70 Mbps	AJ/LPD HDR 203 Kbps 10.3 Mbps 24 Mbps 50 Mbps
LPD/AJ Spatial - Low Band (3 dB beamwidth) Spatial - High Band (3 dB beamwidth) Processing (PG, nulling, etc.) Low Band High Band	45° 3.5° x 12° * 40 dB 14 dB * (19.4 dB)	39° 3.5°x12° 41.6 dB 19.4 dB
Latency Type 1 (10% of the avg sys load) Type 2 (30% of the avg sys load) Type 3 (60% of the avg sys load) (Retrans 3x)	90% < 200 msec. 90% < 1 sec. 90% < 30 sec.	90.0% 88.8% 98.9%
HB/LB Transition	<1 sec.	1 sec.
Packet Delivery Type 1 (10% of the avg sys load) Type 2 (30% of the avg sys load) Type 3 (60% of the avg sys load) (Retrans 3x)	90% 90% 90%	75.0% 73.6% 88.3%
20 Node Network Initialization Time	<6 min.	2 min.
Node Entry Time	<30 sec.	10 sec.
Detect Node Exit Time	<10 sec.	5 sec.

Live Test under operational conditions - User level performance

What Was Demonstrated by the FCS C NC Demo

1. Raytheon Network Centric Radio In Operations

- Operates Like WNW would In Network Centric Operations at Tier 1 & Tier 2
- SCA Compliant, Non-Proprietary Software
 - Raytheon Will supply FCS C Waveform Given to JTRS Library as above
- High data rate LOS (including LOS airborne extensions to BLOS) networked radio system
 - >100 km Non-LOS Ranges Achievable with Airborne Relays
 - Automatic Adaptation to Lower Data Rates for Increased Range
- Automated "configuration" and Network Management

2. Heterogeneous Gateway Architecture Implemented In TCA Structure

- Gateways linked end-users via Sample WAN technologies
 - FCS-NC, Ku SATCOM, Inmarsat, Iridium, GlobalStar
- Gateways linked end-users via Tactical Data Radios (IP Capable)
 - EPLRS, EPLRS micro-Lite, Soldier Radio Waveform (SRW), SECNET 11
- Gateways linked end-users via Tactical Voice Radios
 - PRC 117, PRC 119, PRC 150

3. Complete Soldier Operation In Simulated Missions

- Initial Training in NOV/DEC 2005 at Fayetteville, TN
- Heterogeneous Gateway Operations as well as Surrogate UAV Placement for Optimum Connectivity

Demonstrated Transformational Communications Down to the Platoon

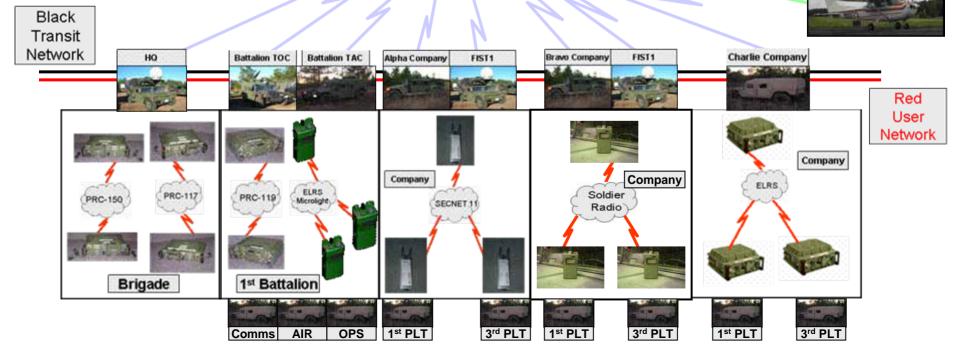
FCS-C Network Centricity Demonstration Network Connectivity with FCS MANET & Gateway

Battalion

Airborne

Relays

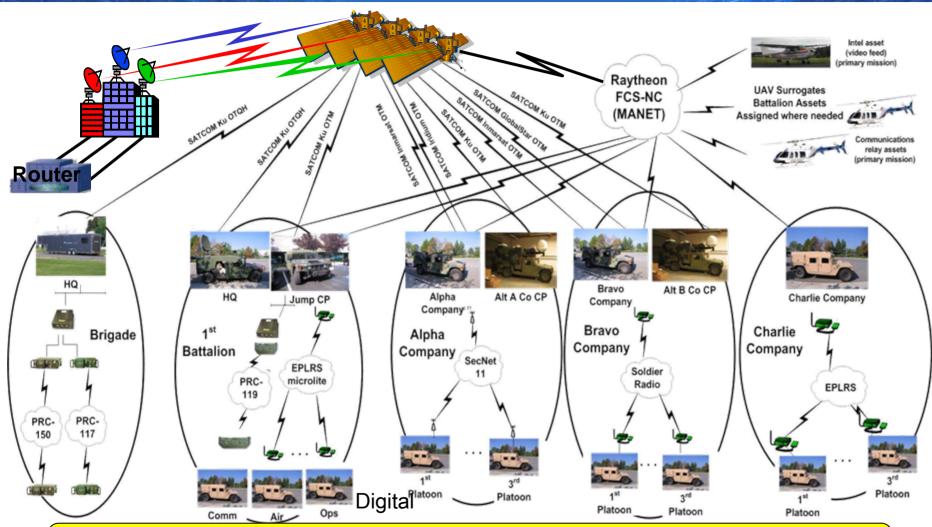
- Network Centric Radio Operations
- Heterogeneous Gateway Architecture
- Complete Soldier Operation
 - FCS Signal Soldiers (Ft Gordon, Ft Benning)
 - USA Soldier Battle Lab (Futures Branch, McKenna Urban Ops)
 - FCS Contractors (Raytheon, CenGen)
- Demonstrated Transformational Comms down to the Platoon


Interoperable Communications

CPOF's VoIP

EPLRS

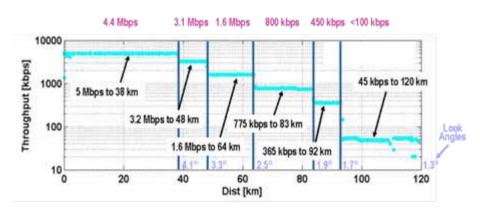
- HAVEQUICK I/II (PRC-117)
 SINCGARS (PRC-119)
- ITT Soldier Radio
- HFMR (PRC-150)



Heterogeneous Network Centric Architecture **FCS-C NC Demonstration**

- Heterogeneity between Radios and Radio-Types (Analog Voice vs Data/VoIP)
 - -Translate everything into IP (Analog Voice to VoIP)
 - -Interoperate at the Network Layer (OSPF)
 - -Demonstrated over 120 km-wide scenarios

Comparison of FSC & WNW Performance


Characteristic	Wideband Network Waveform	FCS C MANET / Gateway 2
Demonstrated Max Data	• 1 Mb/s @ ~14 miles (Expansion to	• 5.5 Mb/s @ 23.6 miles
Rate at Max line-of- sight, point-to-point	· · · · · · · · · · · · · · · · · · ·	• 1.6 Mb/s @ 39 miles
mode	2000)	• 775 Kb @ 51.6 miles
Demonstrated Radio Interoperability with Networking	Demonstrated hardware running WNW simultaneously with a JTRS version of a legacy signal, which	Simultaneous demo at Ft Benning of MANET/Gateway communications among the following digital and

proves the feasibility of key JTRS

concepts, waveform portability and

simultaneous waveform operation ¹

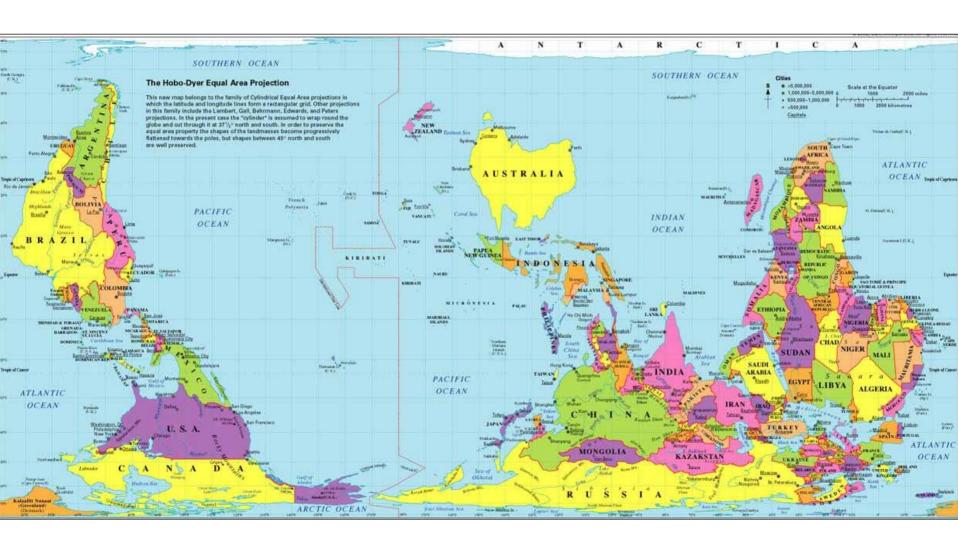
Demonstrated FCS C Performance at Ft Benning

Simultaneous demo at Ft Benning of MANET/Gateway communications among the following digital and analog systems: CPoF's VoIP, the ITT Soldier Radio, the Enhanced Position Location Reporting Systems (EPLRS), HAVEQUICK I/II (PRC-117), the Single Channel Ground and Airborne Radio System (SINCGARS/PRC-119) and the High Frequency MAN-PACK Radio (HFMR/PRC-150) and various SATCOM Links.

Note: The Army's Joint Network Node was not included in this comparison as JNN is not a tactical MANET system as JTRS WWW and FCS C. It is on-the-halt (Static) SATCOM (non-MANET) and is designed to be integrated into tactical backbone at Brigade fixed TOCs.

¹ Charlotte Adams, "Editor's Note: Reinventing JTRS", Avionics Magazine Monthly News, Volume 1 Issue 1, July 17, 2006.

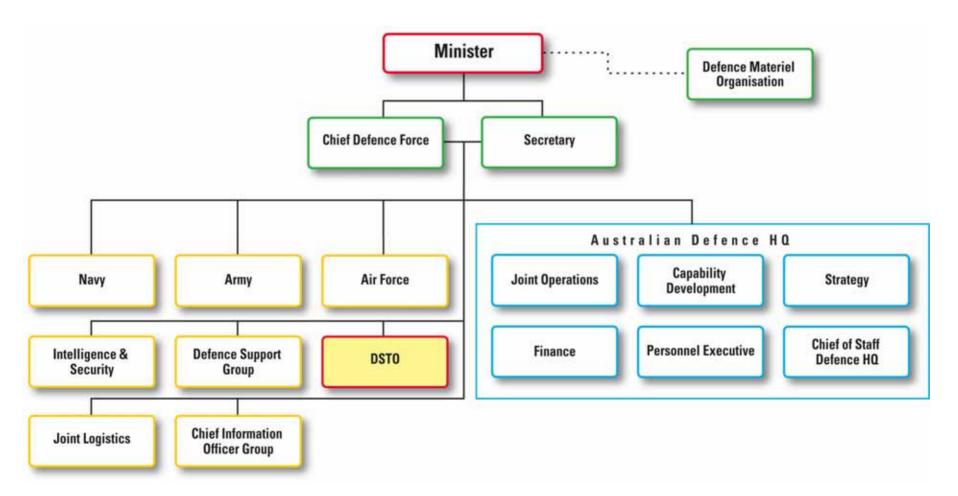
² FCS C Network Centric Demonstration, McKenna MOUT Site, Ft Benning, January 2006



Current Theatre Environment An Australian Perspective

Dr Roger Lough
Chief Defence Scientist

Pacific Theatre Operational Science and Technology Conference
Hawaii
April 2007



DSTO Mission and Vision

Defence Structure

DSTO at a Glance

DSTO Functions

Program Thrusts

Wide Area Surveillance

Program Thrusts Network Centric Warfare

Program Thrusts Interoperability

Joint Australian United States Exercise – Talisman Sabre 07

Coalition Readiness Management System Project Arrangement -CReaMS

Program Thrusts Experimentation

Automation of the Battle Space Initiative

Headmark

Headline – Concept Exploration and Analysis Laboratory (CEAL)

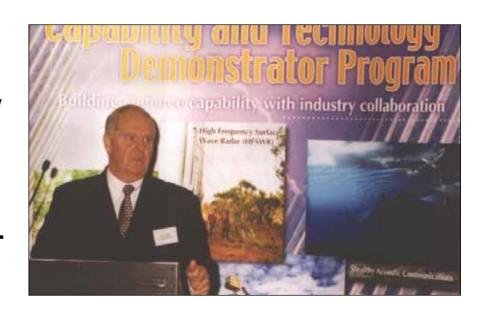
Program Thrusts Chemical, Biological & Radiological Defence

PC3 Laboratory

Breathable Chemical and Biological suit

Program Thrusts Aging Aircraft

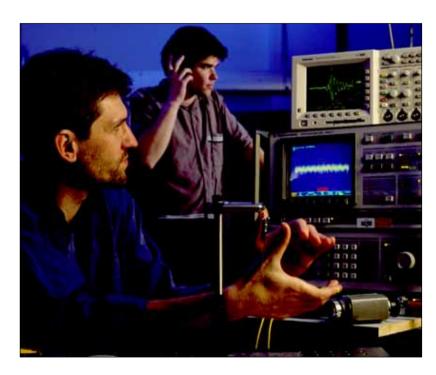
Structural test on F/A-18



Smart Structures

Capability & Technology Demonstrators

- Allows Australian Defence Industry to demonstrate how advanced technology can enhance Defence capability.
- \$160 M invested since 1998.
- Average CTD \$3m; 3 years.



Capability & Technology Demonstrators

Underwater Personal Computer



Fibre Laser Sonar (Hydrophone)

Capability & Technology Demonstrators

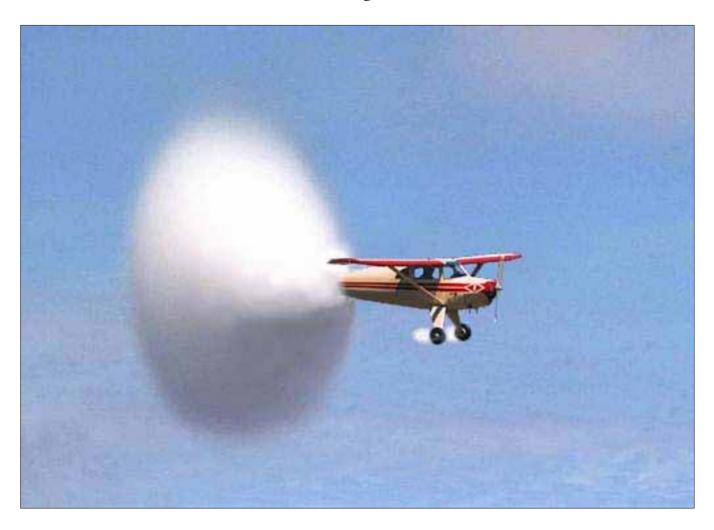
Cuttlefish – protection of ships from radar surveillance

Rassputin Sonobuoy

Emerging Issues

Operational Tempo

IEDs


Space (Hypersonics)

Intelligence, Surveillance and Reconnaissance

Thank you

Perspective on S&T Collaboration

Tae-In Choi, Vice President Agency for Defense Development

Operational S&T Conference PACOM, Hawaii

April 2007

Overview of Talk

- → RoK Battle Lab Status
- → RoK/US S&T Cooperation
 - Examples of Joint Development
- → Conclusion

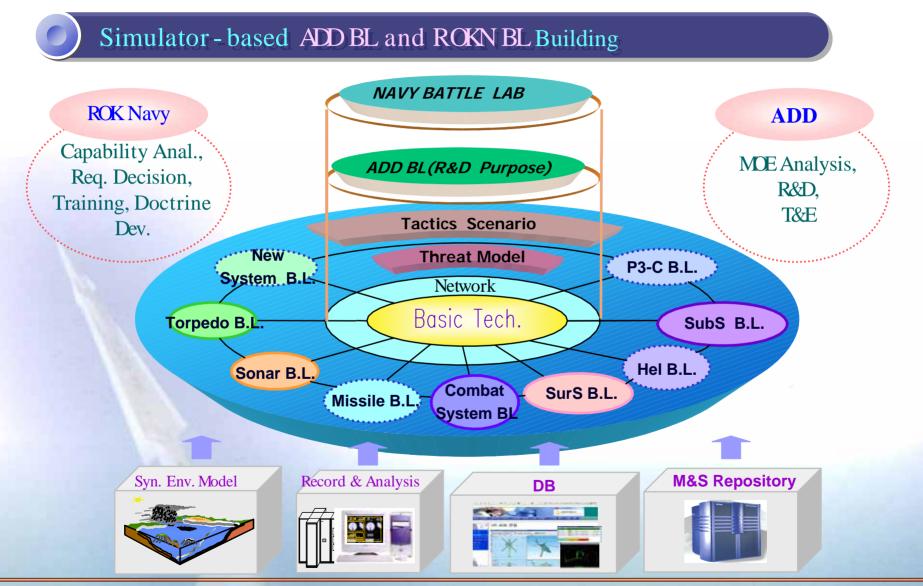
Naval Battle Lab. Under New SBA System

- The Role of Battle Lab.
- ROKN BL and ADD BL for SBA
- 2007 US-ROK NBE Symposium

The Role of Battle Lab. (1/3)

What is Battle Lab?

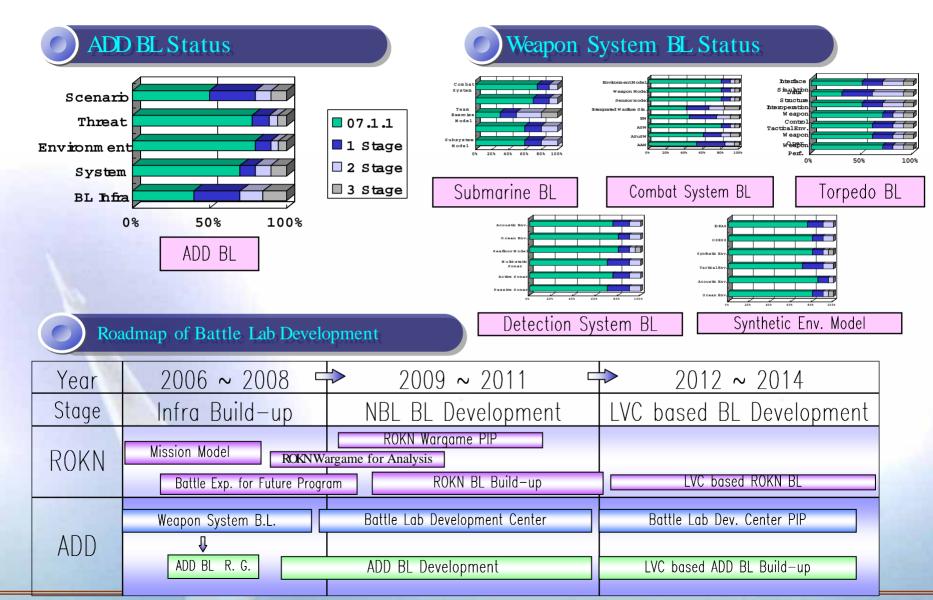
- A mechanism for assessing New Ideas & Capabilities provided by advanced technologies
- An innovative mechanism for scientific requirement generation based on the operation concepts of future battlefield
- A core verification tool in Top-down/Born-Joint weapon development flow
- Battle Lab needs to be designed to meet diverse requirements as engineering test beds for R&D Program Managers and as simulation tools for field commanders, tactical planners, and war gamers.


The Role of Battle Lab. (2/3)

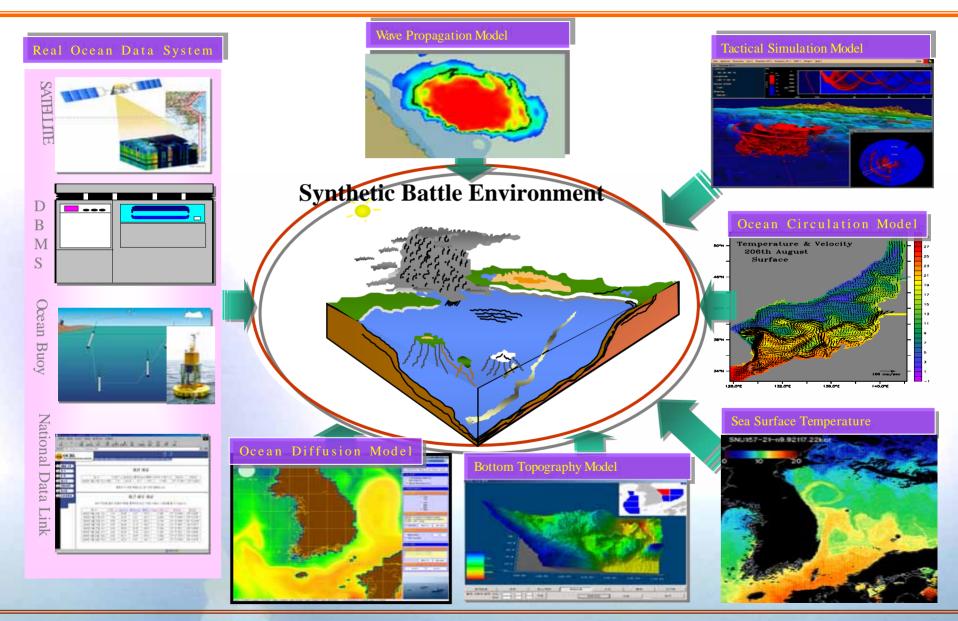
The Role of Battle Lab. (3/3)



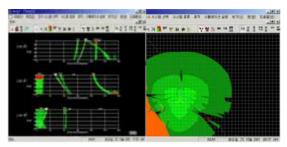
ROKN BL and ADDBL for SBA (1/3)

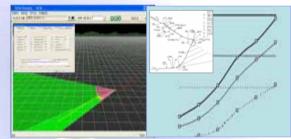


ROKN BL and ADDBL for SBA (2/3)

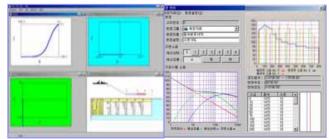

ADD Battle Lab Development Center based on LBTS

Status and Roadmap for ROKN BL and ADD BL (3/3)

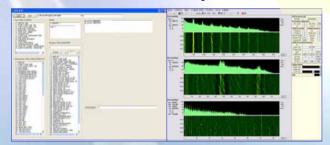

Synthetic Battle Environment Model


Detection System BL

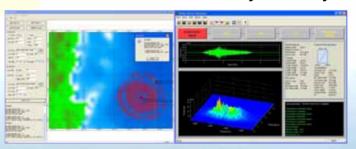
M&S Resources for Underwater Detection System BL



Detection Effectiveness Analysis for Harbor Underwater Surveillance System

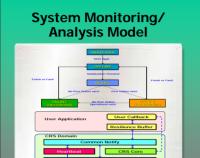


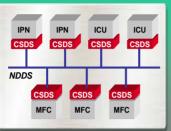
Operational Effectiveness Analysis for Torpedo Acoustic Countermeasure System


M&S Resources for DSBL-ADD

Detection Performance Analysis for Towed Line Array Sonar System

Signal Classification Algorithm Analysis for Navy Acoustic Information Management System


Detection Probability Estimation for Hull Mounted Sonar System

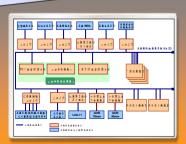

Naval Combat System BL

Combat System BL Status

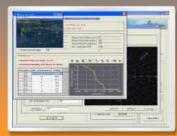
Common Infra (Middleware) Model

System Software Architecture Model

Network Architecture Model


SYSTEM INFRA STRUCTURE MODELING & ANALYSIS

COMBAT SYSTEM LAND BASED TEST SYSTEM



SYSTEM & TACTICAL WARFARE PERFORMANCE MODELING & ANALYSIS

System Construction Model

Sensor System Model

Self Defense Model

Naval Gunfire Control Model

2007 US-ROK NBE Symposium

- Date: October 25-26, 2007
- Place: JINHAE NAVY CLUB
- Objective of Symposium
- Technical Information Exchange regarding Battle Lab.
 & Naval Battle Experimentation
- Cooperative relation build-up between BL—related organizations of US & ROK
- Major Topics
 - Requirement Generation via Battle
 Experimentation for Naval Weapon Systems
 - SBA Strategy for US & ROK Naval Systems.
 - Synthetic Ocean Environment Modeling for NBE
 - Threat Modeling for Air/Surface/Undersea Warfare
 - Methodology for Fleet Battle Experimentation
- Design and Analysis of Naval Battle Experimentation

Subject : Naval Battle Experimentation - Requirement Generation via Battle Experiment for Naval Systems - Shi A Strategy for US & BOK Naval Systems - Synthetic Ocean Environment for Battle Experiment - Methodology for Fleet Battle Experiment - Methodology for Fleet Battle Experiment - Meralegy for Joint Battle Experiment Date : October 25-26, 2007 Place : Naval Systems Development Center, Agency for Defense Development P.O. Bus 15 Mahae Kyung nam, 645-600, Korna Sponsor : Agency for Defense Development, Korna Contact : Dr. Woon Hyun Cho Johnhamant, Korna Contact : Dr. Woon Hyun Cho Johnhamant Center Agency for Defense Development, Korna Agency for Defense Development, Korna

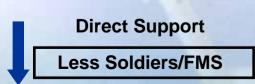
^{*} NBE: Naval Battle Experimentation

RoK/US S&T Cooperation

Evolution of Strategic Alliance

Dependency on Conventional Forces

Combination of US and ROK technologies enabled ROK self reliant defense


<u>Deterrence on the Korean Peninsula</u> and <u>within the Asian</u>
<u>Pacific Region</u>

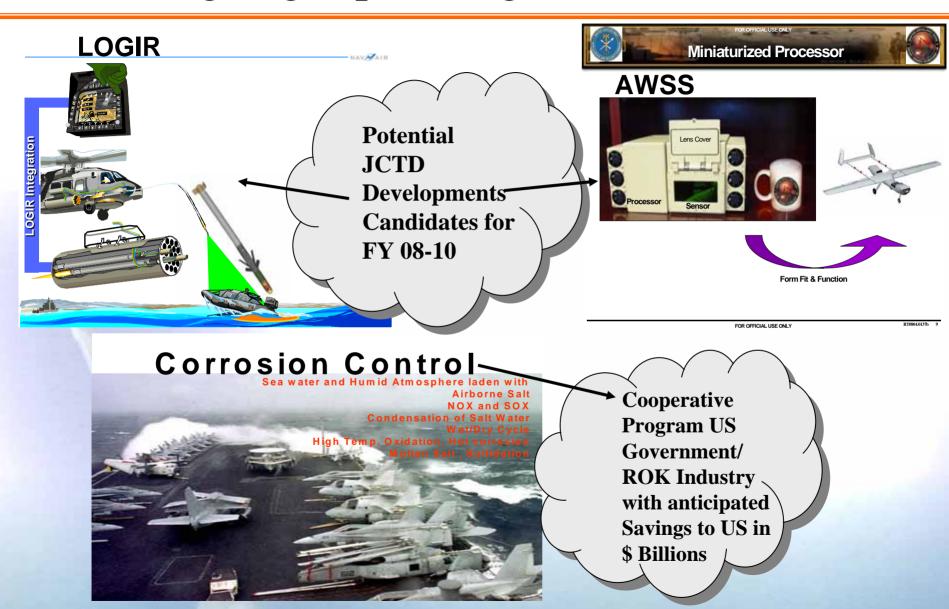
Defense/Economic/democratic growth

Enabling U.S. Strategic Flexibility – 3rd largest in OIF

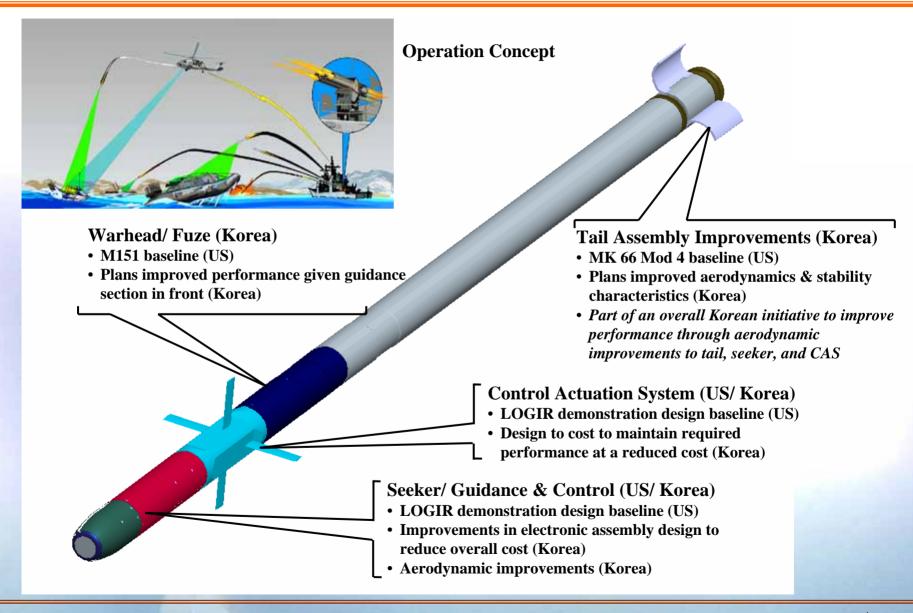
Cooperate Self-reliant Defense

Cooperation in Defense R&D

Some examples of mutually beneficial exchanges include:

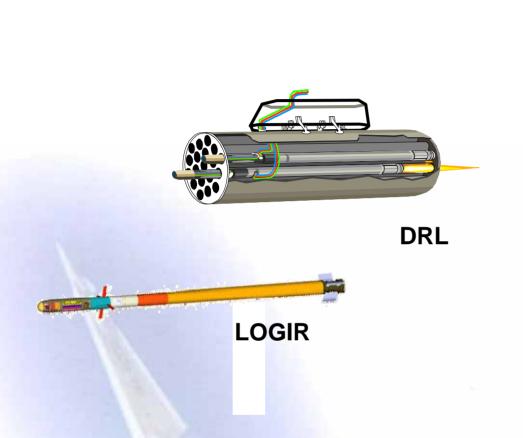

- Engineer and Scientist Exchange Program (ESEP)
- Data Exchange Agreements (DEA)
- Project Agreements (PA)
- S&T co-development: LOGIR
- Look forward to participating in PACOM's JCTD
 - : Medusa, AWSS
 - * Medusa: JCTD version of LOGIR
 - * AWSS=Airborne Weapons Surveillance System.

Technology Cooperation Sub-Committee (TCSC)


An-Heung PG/Feb. 2007

Ongoing/Upcoming Joint Efforts

LOGIR Collaboration

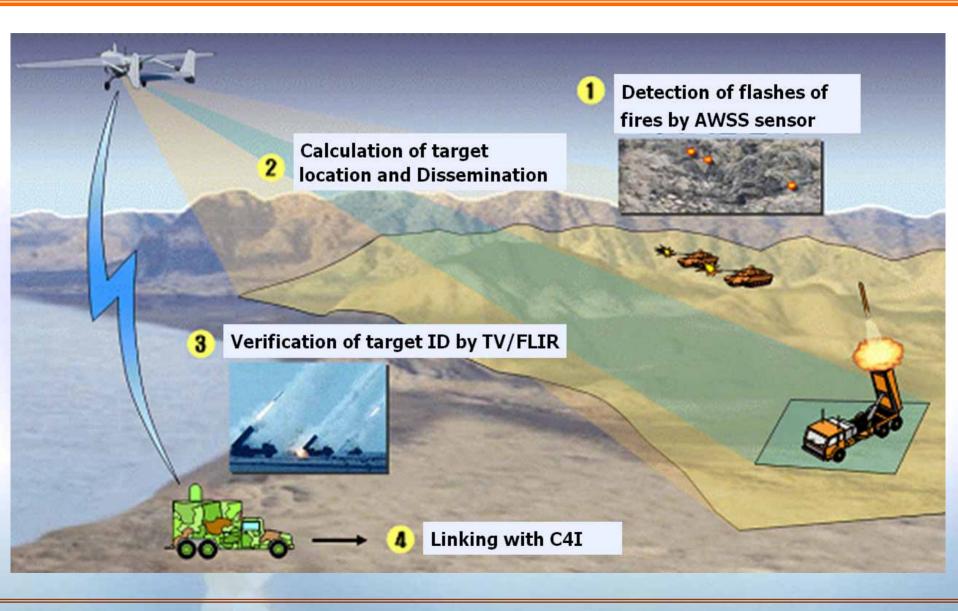


LOGIR Status

→ LOGIR

- Currently S&T MOU for '07 ~ '09
 between ADD and NAWC/China Lake
- To complement LOGIR technology in the areas of aero, structure, G&C, actuator, signal processing, and fuze.
- Unique Opportunities for T&E:IR Data on Korea's Harsh Terrain/Weather
- Hope to continue on with SDD
- → JCTD: Medusa
 - April 4 workshop for details

Medusa JCTD


MH-60R

KO-1

- Develop core capability of LOGIR/DRL for MH-60R and KO-1 to address FAC/FIAC scenarios
- Demonstrate capability of LOGIR-enhanced platforms to engage and destroy multiple moving maritime targets

AWSS JCID

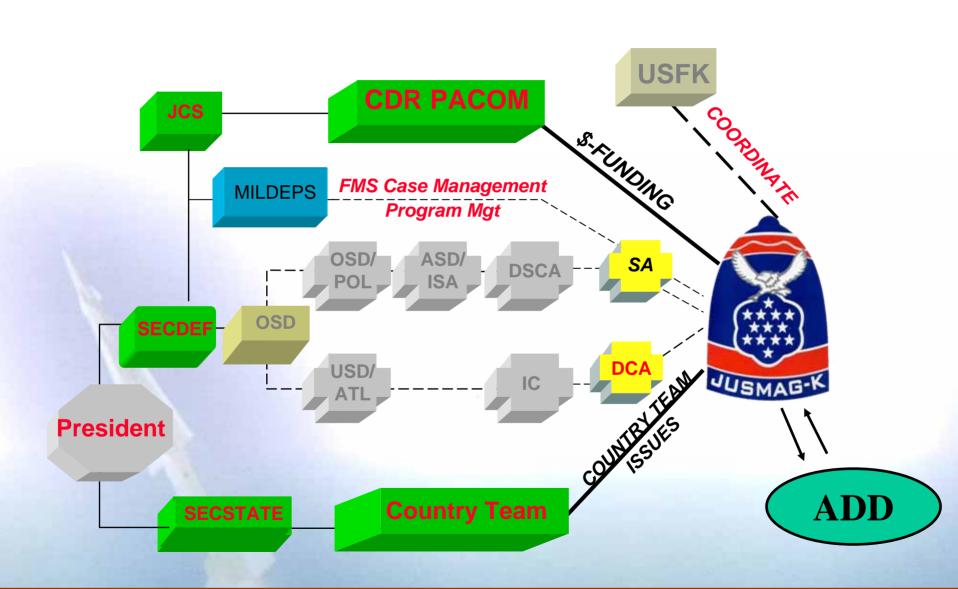

Airborne Weapon Surveillance System (AWSS)

- → Offers target locations and classification information in near real-time by detecting, classifying, and locating flashes from target NK fires
- → To combine AWSS sensor with UAV System (Falcon)

Talks are under way between ADD and US Army.

AWSS Components

Falcon Vehicle (Modification)



* LCS : Launch & Recovery Control Station

Positive Signs for Cooperation

- → Has taken a long time to come to present status
- ◆ Shift from DEA to PA, PA to Co-Development takes place
- → The seeds we have sown for 50 years start to sprout

JUSMAG-K was behind the Scenes

Conclusions

- → RoK Battle Lab program introduced
- ◆ Current cooperation status briefly reviewed
 ADD is looking for more opportunities:
 e.g. LOGIR, M&S, GPS, C3...
- ◆ International cooperation is viewed as a means of delivering capability faster and cheaper to the warfighter

Nuclear, Chemical and Biological Defense Research and Development

Pacific Operational Science & Technology
Conference

4 April 2007

Dr. Tom Hopkins A/ATSD(NCB)

Outline

- ATSD(NCB)
- Strategic Guidance
- Oversight Framework
- R&D Portfolio
- Current Capability Needs
- Emerging Threats

Secretary of **Defense**

Under Secretary of Defense for Acquisition, Technology and Logistics

Assistant to the Secretary of Defense for Nuclear and Chemical and Biological Defense Programs

Counterproliferation,
Cooperative Threat
Reduction and Treaties

Chemical and Biological Defense and Chemical Demilitarization Programs

Nuclear Matters

Defense Threat Reduction Agency

ATSD(NCB)

- Principal Staff Assistant
- Advise the Secretary, Deputy Secretary, and USD(AT&L) on nuclear matters and chemical and biological defense programs.
- Direction and Oversight
- Provide strategic direction and oversee DoD WMD threat reduction activities, combating WMD.

Resource Alignment

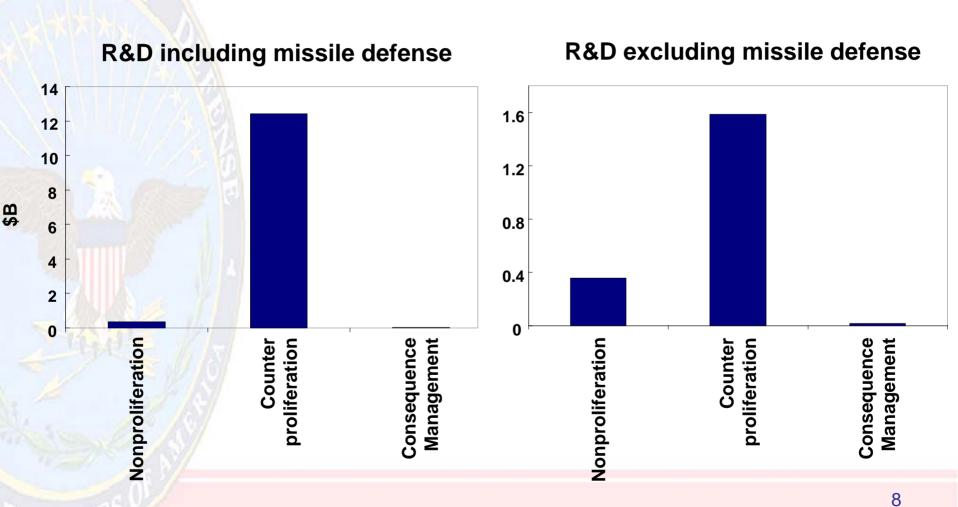
 Assess resource alignment with high level guidance to prevent, defeat, and protect against current and emerging WMD threats.

Integration

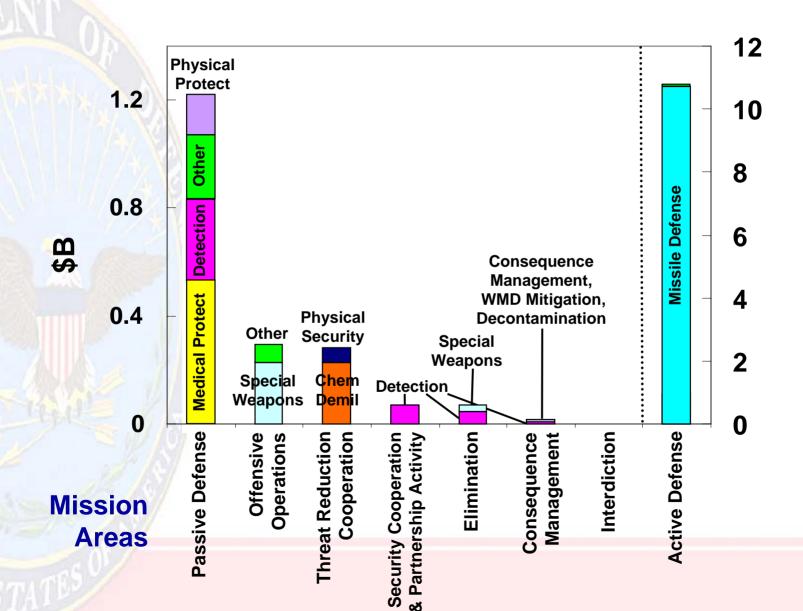
 Ensure research and development, multilateral cooperation, tailored threat reduction strategies and deterrence concepts are applied as integrating functions.

Strategic Guidance

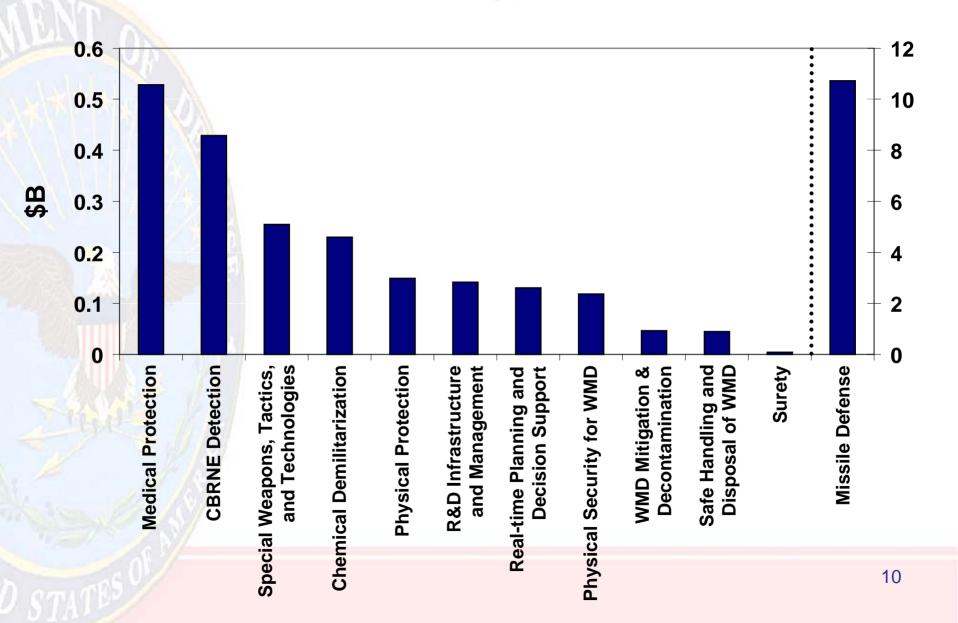
- High-level guidance includes three goals related to WMD proliferation:
 - Prevent WMD proliferation
 - Deter, Defend and Defeat WMD use
 - Mitigate Consequences of WMD use
 - Military framework establishes eight operational missions to accomplish goals
 - Interdiction, Cooperative Threat Reduction, Security Cooperation
 - Elimination, Offensive Operations, Active Defense
 - Passive Defense, Consequence Management
- ATSD(NCB) focuses on DoD capabilities to achieve these goals


Oversight Framework

- WMD threats include potential adversaries who:
 - Want WMD: Nonproliferation
 - Have WMD: Counterproliferation
 - Use WMD: Consequence Management
- U.S. needs a spectrum of capabilities:
 - Nonproliferation to prevent WMD spread
 - Threat reduction cooperation
 - Security cooperation and partnership activities
 - Counterproliferation to defeat WMD
 - Interdiction
 - Elimination
 - Active defense
 - Offensive operations
 - Passive defense
 - Consequence Management to protect against WMD use
 - Consequence management


R&D Portfolio

- Correlated Combating WMD R&D programs with the three pillars and eight mission areas
- Identified mission-unique and cross-cutting technology areas
- Assessed the investment portfolio


FY2007 DoD R&D Investments

FY2007 DoD R&D Investments

Technology Areas

Technology Areas

Crosscutting Technologies

Mission Areas

	Security Cooperation	Threat Reduction Cooperation	Interdict- ion	Offensive Operations	Elimination	Active Defense	Passive Defense	Consequence Management
CBRNE detection	✓	✓	✓	✓	✓	✓	✓	✓
Physical methods for protection				✓			✓	✓
Medical protection							✓	✓
Specialized weapons, tactics, and technologies	✓			✓	✓	✓		
Consequence management and WMD effects mitigation/ decontamination		✓		✓	✓	✓	✓	✓
Real-time planning and decision support			✓	✓	✓	✓	✓	✓
Physical security for WMDs	✓	✓	✓	✓	✓	✓		✓
RDA infrastructure and management	✓	✓	✓	✓	✓	✓	✓	✓
International cooperation activities and WMD demilitarization	✓	✓						✓
Safely handle and dispose of WMD (and explosives)		✓	✓	✓	✓			✓
Tailored Strategies	✓	✓	✓	✓	✓	✓	✓	✓

All technology areas support more than one mission

Portfolio Summary

Nonproliferation

- Predominantly domestic Chemical Demilitarization
- Focused on detection for arms control applications, arms control information technology, and nuclear physical security

Counterproliferation

- Active defense investments are largest, dominated by missile defense
- Focused on physical protection, offensive operations medical countermeasures, decontamination, and detection

Consequence Management

 Focused on technical reachback, nuclear forensics and technologies for civil support teams

R&D Addresses Command Needs

Portfolio Summary

Nonproliferation

- Predominantly domestic Chemical Demilitarization
- Focused on detection for arms control applications, arms control information technology, and nuclear physical security

Counterproliferation

- Active defense investments are largest, dominated by missile defense
- Focused on physical protection, medical countermeasures, decontamination, and detection

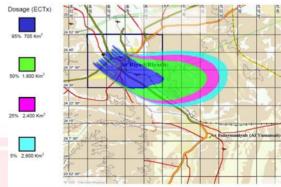
Consequence Management

 Focused on technical reachback, nuclear forensics and to test technologies for civil support teams

12

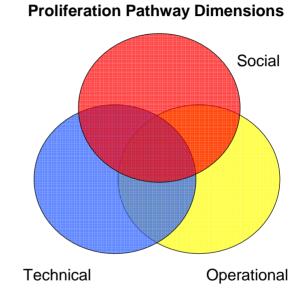
Command Priorities

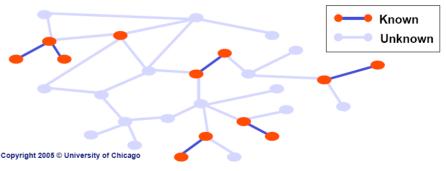
- Persistent surveillance
- Adversarial intent
- Missile defense
- Overcoming integrated air defense systems
- Fast transportation and fast ships
- International military education and training
- Foreign consequence management
- Preferred munitions
- Prompt, hard target defeat capability
- Pandemic preparation



Current Capability Needs

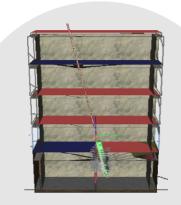
Detection, Identification, and Characterization of CBRN Threats


- Detect WMD at operationally relevant distances
- Track WMD and related materials
- Real-time reachback for technical support for detect, identify and characterize
- Application to targeting, weaponeering, bomb damage assessment, treaty compliance, border security, decontamination, demilitarization, force protection, and other operational applications



Current Capability Needs Decision Support and Planning

- Indicators and understanding of adversarial intent
- Rapid processing of intelligence and dissemination to appropriate decision points allowing rapid action
- Information exploitation



Current Capability Needs Offensive Operations

- Defeat WMD targets
 - Hard and deeply buried targets
 - Tunnels
 - Bunkers
 - Agent defeat technologies
- Secure, neutralize, store, and destroy or dispose of WMD

Deep Bunker Targets

Tunnel Targets

AJMPOINT

-#1 Detanaton

-#2 Detanaton

BLAST

DORAVAY

TUNNEL FLO

#5 Letanaton

Tunnel defeat tests

Hard Target Defeat

Tunnel Tests

Current Capability Needs Protection

- Medical countermeasures
 - Vaccines and broad spectrum therapies
 - Medical prophylaxis
- Medical response,
 especially active
 syndromic surveillance
 coupled to mass treatment
 and quarantine
 - Bio-surveillance capabilities
- People, facilities, and mission protection

Current Capability Needs Security Cooperation

- Interagency and international data exchange, coordination, and training
- New partnerships, agreements, and initiatives

Observations

- CBRN detection investment is significant
 - Challenges: Stand-off detection, identification and characterization
- Decision support tools are embedded in larger systems
 - Challenges: Real-time situational awareness and threat anticipation
- Offensive operations R&D investments are dominated by hard and deeply buried target and agent defeat
- Protection is single largest technology area
 - Medical protection dominates and remains the biggest challenge
- Security cooperation R&D...future requirements?

Emerging Threats

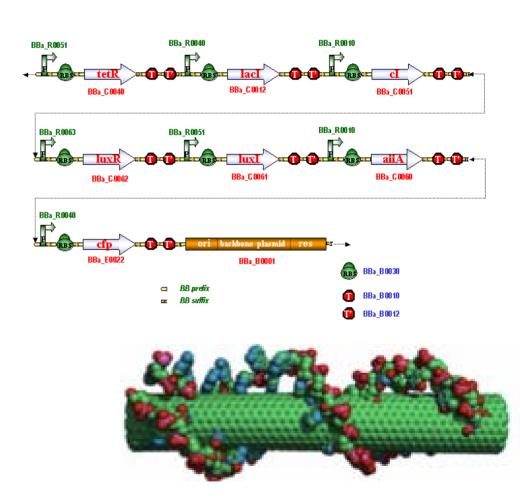
Emerging Threats

Nuclear Proliferation

- New nuclear weapons states
- Acquisition of nuclear weapons by non-state or substate actors

Natural Pandemics

- Global connectivity and modern transportation are accelerating vectors for transmission
- Security and social aspects
- Emerging public health threats can also become BW threats


Emerging Threats

Biotechnology

- Dual-use technology
- Genetic engineering
- Synthetic biology

Nanotechnology

- Nano-enabled biochemical agents and energetic materials
- Circumventing vaccines and evasion of medical countermeasures
- Anti-material agents

Emerging Responses

Responses to emerging threats will require the full spectrum of R&D, operational, intelligence, political measures and international partnerships

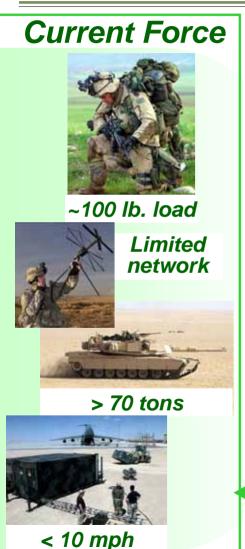
ATSD(NCB) Challenges

- Assess and improve the Combating WMD R&D investment strategy
 - Guidance
 - Current needs
 - Emerging threats
- Ensure that R&D communities communicate and collaborate with stakeholders

Army Science & Technology Overview

4 Apr 2007

Dr. Thomas H. Killion
Deputy Assistant Secretary
for Research and Technology/
Chief Scientist


Outline

- Science and Technology (S&T) Strategy
- Warfighter Guidance and Drivers
- Technology Area Investments

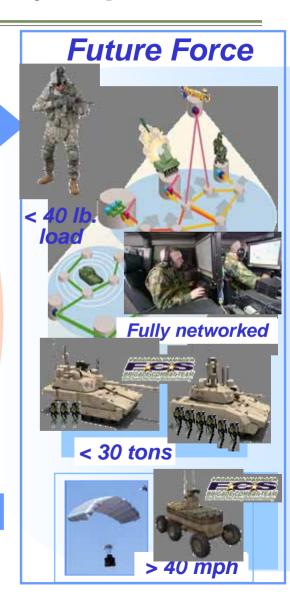
040407_Killion_PACOM_Final

Science & Technology for a Campaign Quality Army with Joint & Expeditionary Capabilities

Enabling the Future Force

Science and Technology—

develop and mature


technology to enable

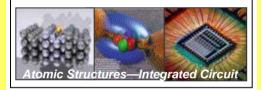
transformational

capabilities for the

Future Force while seeking
opportunities to accelerate
technology directly into
the Current Force

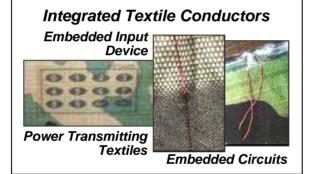
Enhancing the Current Force

From Science to Technologies...Systems 3 Different Types of S&T Investments


S&T PB08 \$1.7B

Development

Acquisition


6.1: Basic Research 18% of S&T

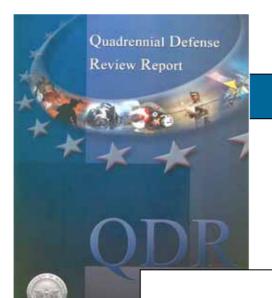
Nanoscience

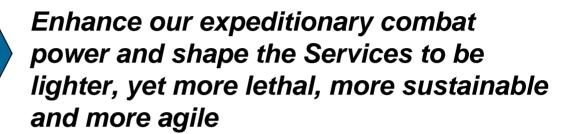
- Understanding to solve Army-unique problems
- Knowledge for an uncertain future

6.2: Applied Research 40% of S&T

- Applications research for specific military problems
- Components, subsystems, models, new concepts

6.3: Advanced Technology
Development
42% of S&T


- Demonstrate technical feasibility at system and subsystem level
- Assess military utility
- Path for technology spirals to acquisition—rapid insertion of new technology


Far Term Mid Term Near Term

040407 Killion PACOM Final 4

OSD Planning Framework

DDR&E Guidance Feb 2006

Protection, Battlespace Awareness, Force Application, Focused Logistics—implementing QDR guidance

040407 Killion PACOM Final

Army Level Guidance

The Army
in Joint Operations
The Army's Future Force
Capstone Concept
2015-2024
Version 2.6

Army Strategic Planning Guidance 14 January 2005 "The FCS further encompasses a set of technologies and capabilities that will spiral into the entire Army as they mature. Networked C4ISR, precision munitions, and advanced fire control will also be key enablers."

"...provide relevant and ready land power capability to the Combatant Commander as part of the Joint Team"

"... provide relevant and ready land power to combatant commanders and the Joint Force..."

"The Army's investment strategy pursues technologies to achieve the goal to field forces that are "lighter yet more lethal, more sustainable and more agile" while achieving entirely new capabilities..."

040407_Killion_PACOM_Final

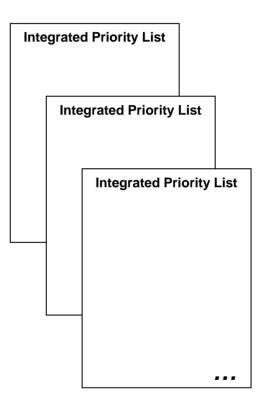
TRADOC Capability Gaps— Shaping S&T Programs

Emerging Top Challenges for Current Force

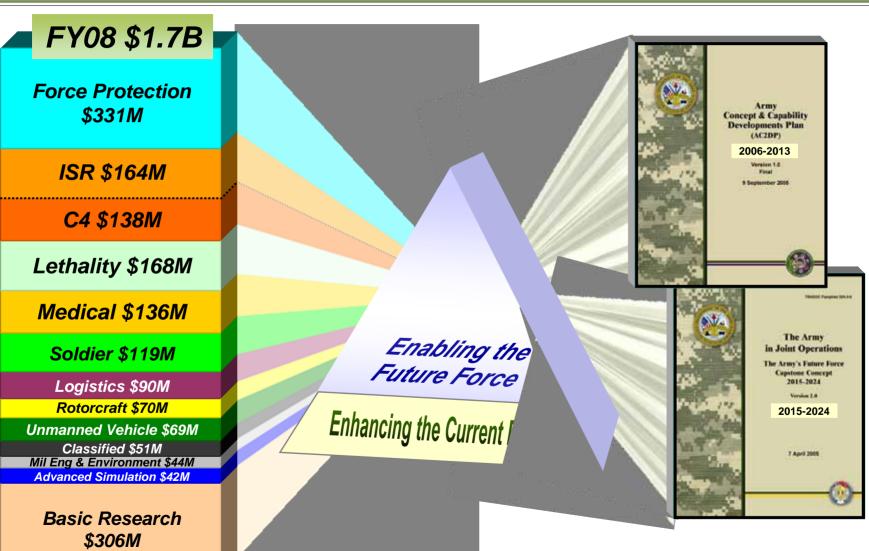
- Networked Enabled Battle Command
- Protect Force in Counterinsurgency Operations
- Soldier Protection in Counterinsurgency Environme
- Logistics and Medical in Counterinsurgency Operation non contiguous battlespace
- Train the Force How and As it Fights
- Tactical Communications
- Ability to Conduct Joint Urban Operations
- Joint Interoperability, Coalition and Interagency Ope
- Enhanced ISR Capabilities
- · Timeliness of Analysis, and Information Disseminati

Future Force Capability Gap Areas

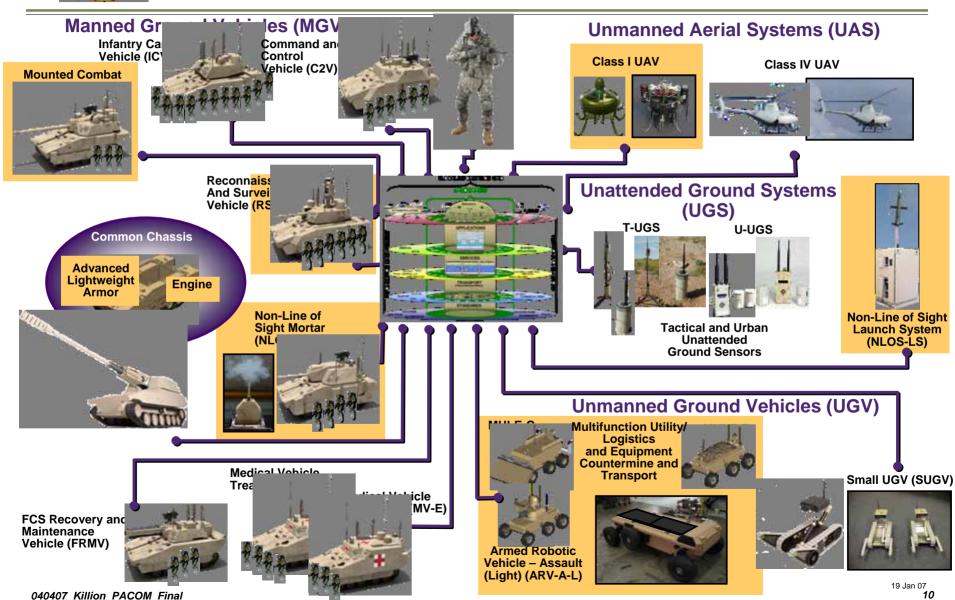
- Enhanced Soldier Protection
- Modular, Scalable and Tailorable Battle Command and Control
- Enhance Platform/Group Protection
- Dynamic, Uninterrupted Communications Network
- Sustainment of Modular Forces
- Enhanced Collection, Exploitation and Dissemination
- Strategic Force Projection/Intratheater Operational Maneuver and Sustainment
- Modular, Tailorable Forces
- Capability for Lethal/Non-lethal Overmatch
- Ability to Train the Force How and As it Fights


040407 Killion PACOM Final

Responding to Joint Needs



Technology Area Investments to Satisfy Gaps—New Capabilities



040407_Killion_PACOM_Final

FCS Brigade Combat Team

Support to Current Operations Demonstrations, Prototypes, or Limited Fieldings

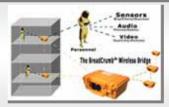
Countermine/ Counter Boobytrap

WARLOCK Jammers

Enhanced Lethality

Acoustic Gunfire Detection System

SWORDS

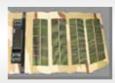


Special
Purpose
Munitions

Network

Well Camera

Secure Wireless Relays



Satellite Nodes

Power & Energy

Zinc-Air Battery Family

"AA"
Battery
Solar
Charger

SATCOM &
Javelin Hybrid
Power Sources

Survivability

Integrated
Rocket, Artillery,
Mortar (RAM)
Detection

Backstop

11

Current Force—Force Protection

Platform Protection

Expedient HMMWV Armor Kit

Tactical Vehicle Add-on Armor

Tear-off Windshields

Deltoid Axillary Protection

Vehicle Class Body Armor Support System

Interceptor Body Armor

Counter Rocket Artillery Mortar

Unattended Transient Acoustic MASINT System (UTAMS)

Backstop

Lightweight Counter Mortar Radar

Airborne Detection

Neutralization

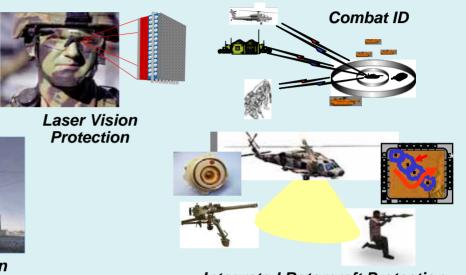
Countermine/Counter Boobytrap

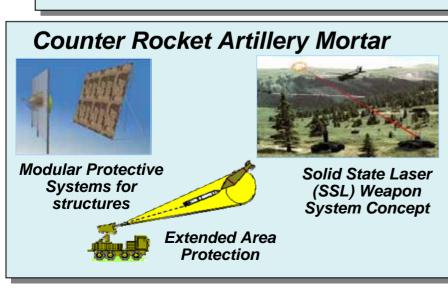
Detection, Surveillance, Neutralization and Defeat

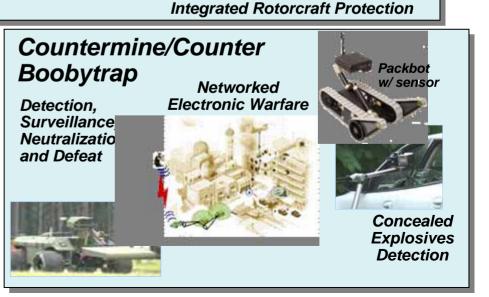
Robotic Detection/Neutralization

040407 Killion PACOM Final

Future Force—Force Protection


Platform Protection




Structural Armor

Active Protection

040407 Killion PACOM Final

Current Force—ISR and C4

Command & Control

Urban Tactical Planner (UTP)

Agile Commander

Airborne Network Extension

Extended Range Communications (Breadcrumb)

Networked Comms

Tele-engineering

Integrated Meteorological System

Surveillance & Sensors

Overwatch—Detection & Classification of Hostile Fire

IR Sensors for Small Raven & Pointer

Mobile Stabilized Panoramic Sight

Pilar Gunfire Detection System

Future Force—ISR and C4

Persistent Sensor Coverage

Layered Networked Sensors

Command & Control

Knowledge **Fusion**

Tactical Mobile Networks

- Find the Enemy
- Assured Comms
- Battle Command

MOUT/Situational Awareness

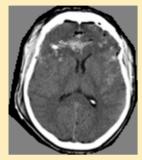
Through Wall Sensing

Pos/Nav Network Assisted and Improved MEMS IMUs

C2 in Urban Terrain

Advanced Antennas

Tactical Network & Communications Antennas Directional **Antennas**


15

040407 Killion PACOM Final

Future Force—Medical

Medical

Improved Treatment for Head Injuries

Combat Casualty Care

Regenerative Therapies

Far-Forward Resuscitation & Hemorrhage Control

Semi-Autonomous Intensive Care & Transport System

Infectious Diseases

Malaria Treatment Drugs

Malaria Rapid Diagnostic Device

Malaria

Prevention

Vaccines

Dengue Prevention Vaccines

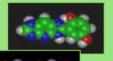
Performance Test for Future Lightweight Body Armor Systems

Operational Medicine

Remote Monitoring of Warfighter Health and Performance

Future Force—Soldier Systems

Future


Force

Warrior

Soldier

Modeling & Simulation

Novel Fibers for Ballistic Protection

Survivability

Rations

First Strike **Compact Ration**

Joint Combat **Feedina**

Power

Fuel Cell Battery Hybrid

Photovoltaics

Electro-textiles Stirling Engine

Personnel Technologies

Accessing, Retaining & Training Adaptive Soldiers & Leaders

Realistic, Effective **Training**

Physiological Status Uncooled IR Monitoring Sensors for UAVs

Pointer

040407 Killion PACOM Final

Future Force Warrior (FFW)—2006

• FFW Increment 1 at C4ISR OTM Jun-Aug 06:

- Current force integration via FBCB2

 Integrated combat ensemble with stand-off body armor/load carriage/electronics and signature management

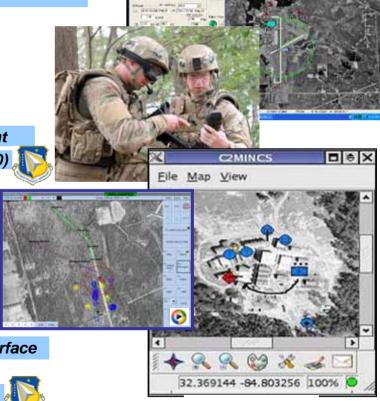
- Squad level NLOS cooperative engagement

- Headgear with integrated fused thermal and I2

- System voice control

 FFW Early Increment 2 improvements at OTM 06 and AAEF/Spiral C:

- Beyond squad level NLOS cooperative engagement


- Digital target hand-off to joint platforms (F-16, A-10)

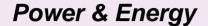
- Class I UAV imagery feed

- Goggle mounted "look down" display
- Physiological status monitoring

FFW at C4ISR OTM and AAEF/D in 2007

- Precise positioning system
- Low power flexible display demo
- Headgear sensor fusion
- Wireless Personal Area Network and weapons interface
- UGV, UGS integration to FFW platform
- Compact computer (Falcon computer from AFRL)
- Apache digital target hand-off

Soldier Display


Leader Display

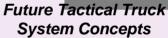
FFW transitions to PEO Soldier in 1QFY08 for Ground Soldier System (next generation Land Warrior)

Future Force—Logistics

Logistics

Hybrid Electric Drive

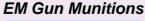
Heavy Fuel Engine



Fuel ormation

Fuel Cell Development

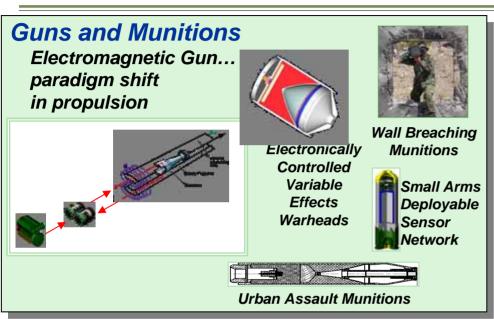
Deployability

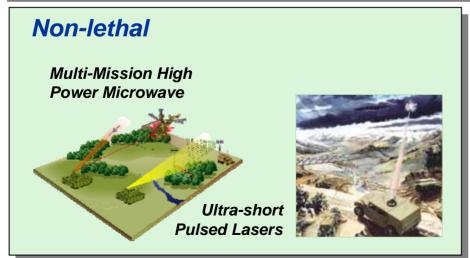

Lightweight Band Track

Precision Air Drop 30k lbs

Sustainment

Water Generation & Recovery





Future Force—Lethality

040407 Killion PACOM Final 20

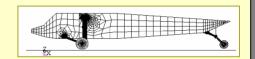
Future Force—Rotorcraft

Rotorcraft

Reduced Operations and Support Costs

Propulsion and Drive Trains

- Increased Fuel Efficiency
- Lighter Weight Components
- Small Heavy Fuel Engine



- Reduced Weight/Vibration
- Improved Reliability and Durability

Intelligent & Active Rotors and Controls Embedded Actuators

Rotors and Flight Controls

Platform Technology

 Advanced Rotary Wing Concept Designs

 Aviation Weapons Integration

 Directed Energy/ Non-lethal Weapons Integration

Current Force—Advanced Simulation

Joint Fires and Effects Trainer System

- Application of indirect effects in urban battlespace
- Cognitive proficiency for better decision-making

Fires & Effects Command (FEC)

• Testbed for system and human/machine interface requirements for Networked Fires Command node

Open Terrain

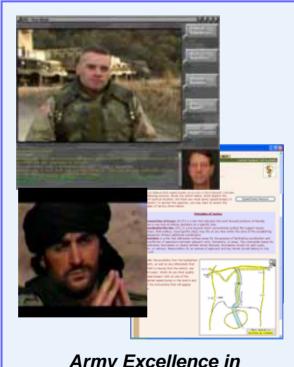
- Skill and cognitive trainer
- Mounted and dismounted
- Range of "individual" to "collective" tasks

Close Air Support (CAS)

- Movable flats for mixed reality environments
- 300-degree perimeter field-of-view
- 360-degree overhead field-of-view
- All rear projection

040407 Killion PACOM Final

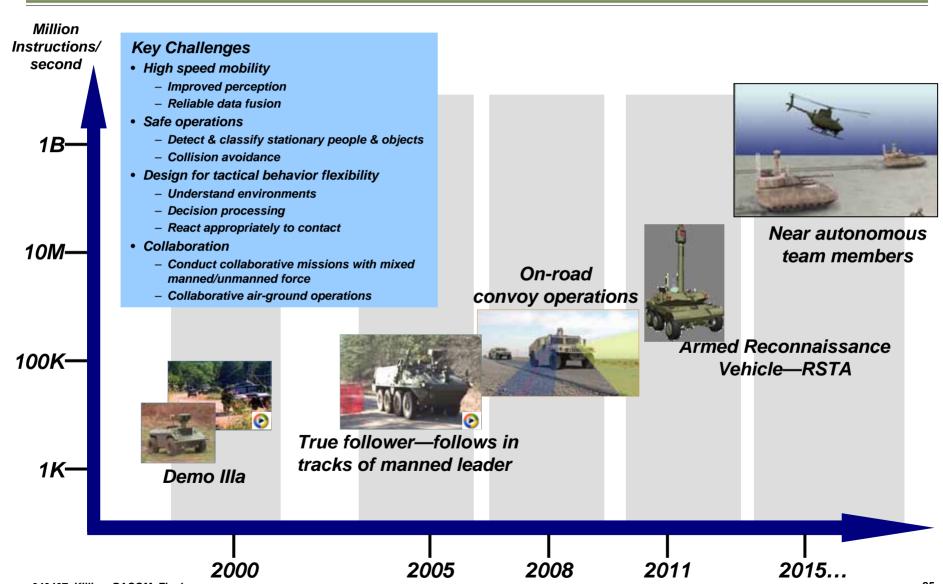
Future Force—Training Simulation


Adv Simulation

24

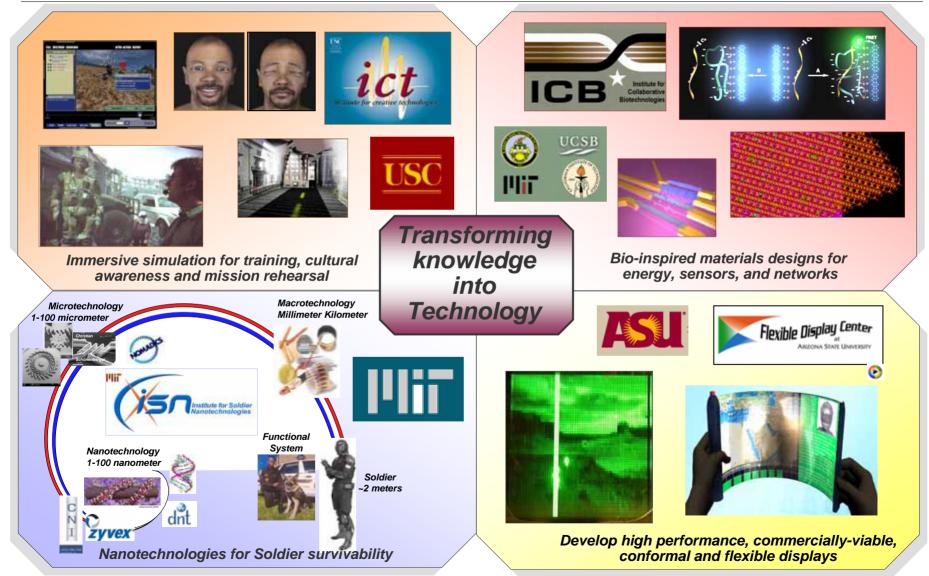
Training Strategies & Simulation

Next Generation Training Systems



Army Excellence in Leadership

Progress in Autonomy & Cognition for Operational Capability


040407 Killion PACOM Final

25

Shortening Cycle Time— Research to Products

Army S&T...

Engine of Transformation

The Overall Classification of this Briefing is UNCLASSIFIED

Game Changing Technologies

Computational Imaging Systems

Timothy M. Persons, Ph.D.
Technical Director and Chief Scientist
Disruptive Technology Office
Office of the Director of National Intelligence

April 4, 2007

The Overall Classification of this Briefing is UNCLASSIFIED

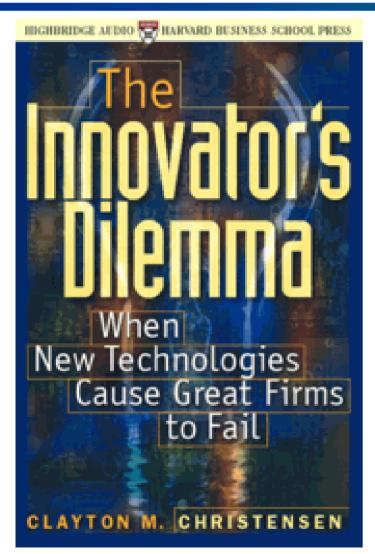
How the Disruptive Technology Office is Working to Subvert Pre-21st Century Intelligence Business Paradigms

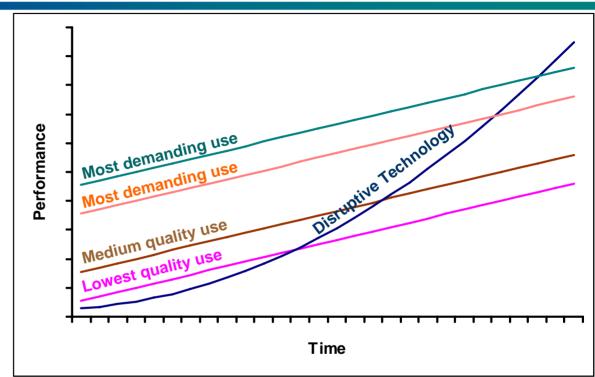
Case Study: Computational Imaging Systems

Timothy M. Persons, Ph.D.
Technical Director and Chief Scientist
Disruptive Technology Office
Office of the Director of National Intelligence
UNCLASSIFIED

April 4, 2007

The Nation's Intelligence Community





The Innovator's Dilemma

Christensen, Clayton M. *The Innovator's Dilemma*, Harper Business, 1997, 286 pages

Established Technology

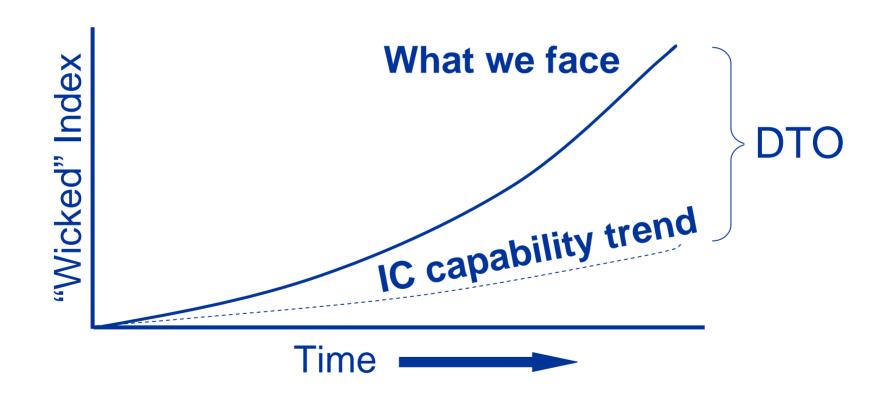
Silver halide photo film

Wireline telephony

Manned fighter & bomber aircraft UNCLASSIFIED

Disruptive Technology

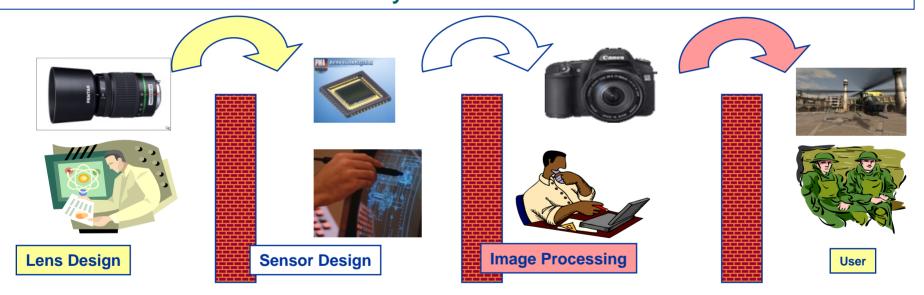
Digital


photography

Mobile telephony

Unmanned aircraft

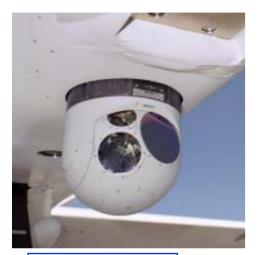
DTO Addresses "Wicked" Problems



Conventional Approach to Designing Imaging Sensors

n Current imaging sensor design strategy:

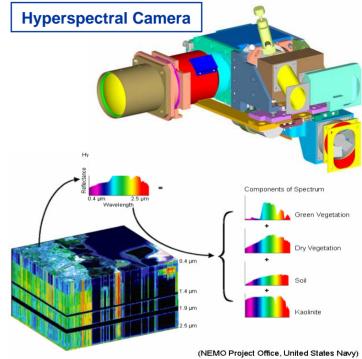
- Separately designed and optimized subsystems/components bolted together
- Fixed allocation of resources at design time
- Feed-forward information flow only


Case Study for a Hypothetical Sensor:

Data generated = 1024 x 1024 (spatial) x 200 (spectral) x 8 bits = 200 MB / frame

Information extracted from a typical tactical scene = 100 objects of interest x 4 B/object = 400 B

Current High Performance Imaging Sensors



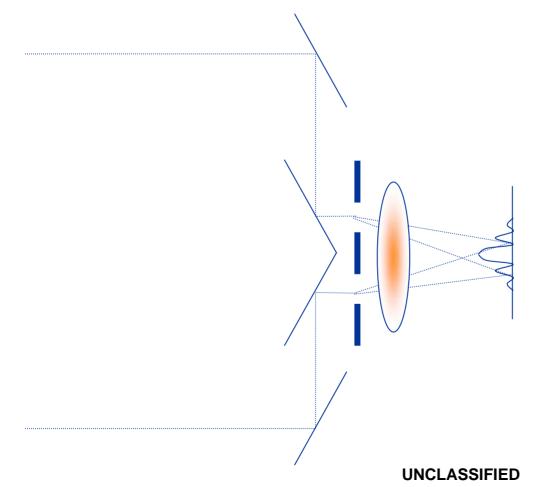
Predator Ladar

Predator Camera

39 Megapixel Hasselblad

Technology Scaling Driven by "Moore's Law"

- 3D, hyperspectral, polarimetric, Doppler Ladar....
- More detector pixels, more spectral bands, higher frame rates....
- Governing philosophy: "More data is better data"


Definition of Computational Imaging Systems

- Sensing systems that exhibit jointly optimized optics, transduction, algorithmic, form factor, power, and information factors which together are tunable and exhibit semi to fully autonomous, purposeful¹ sensing. Such systems have experimentally exhibited the following features: **Digital super-resolution Depth of field extension** Logarithmic dynamic range adjustment **Multispectral** Low aspect ratio (slim form factors) **Polarimetric** □ Wide FOV
- ¹Purposeful sensing: application-specific sampling with optimal allocation between space, intensity, spectrum...

Oldest Computational Imaging Sensor: Michelson Stellar Interferometer

A. A. Michelson, "Visibility of Interference-Fringes in the Focus of a Telescope," Phil. Mag. 31, 256-259 (March 1891).

Astronomical Society of the Pacific

217

VISIBILITY OF INTERFERENCE-FRINGES IN THE FOCUS OF A TELESCOPE.*

By Albert A. Michelson.

When the angle subtended by an object viewed through a telescope is less than that subtended by a light-wave at a distance equal to the diameter of the objective, the form of the object can no longer be inferred from that of the image. Thus, if the object be a disk, a triangle, a point, or a double star, the appearance in the telescope is nearly the same.

If, however, the objective is limited by a rectangular slit, or, better, by two such, equal and parallel, then, as has been shown in a former paper,† the visibility of the interference-fringes is, in general, a periodic function of the ratio of α , the angular magnitude of the source in the direction perpendicular to the length of the slits, and α_0 , the "limit of resolution." The period of this function, and thence $\frac{\alpha}{\alpha_0}$, may be found with great accuracy; so that by annulling the greater portion of the objective the accuracy

by annulling the greater portion of the objective the accuracy of measurement of the angular magnitude of a small or distant source may be increased from ten to fifty times. As ordinarily understood, this increase of "accuracy" would be at the cost of "definition" (which, in this sense, is practically zero); but if by "definition" we mean, not the closeness of the resemblance of the image to the object, but the accurracy with which the form may be inferred, then definition and accuracy are increased in about the same proportion.

In almost every case likely to arise in practice, the form of the source is a circular disk; and if the illumination over its surface were uniform, the only problem to be solved would be the measurement of its diameter. But in many cases the distribution is anything but uniform. If the curve representing the distribution along the radius be $i=\psi(r)$, then the element of intensity of a strip $v_i dx$ will be

$$\int_{-y_{t}}^{y_{t}} \psi(r) \, dy = \phi(x),$$

^{*} Reprinted, by request, from the Philosophical Magazine.

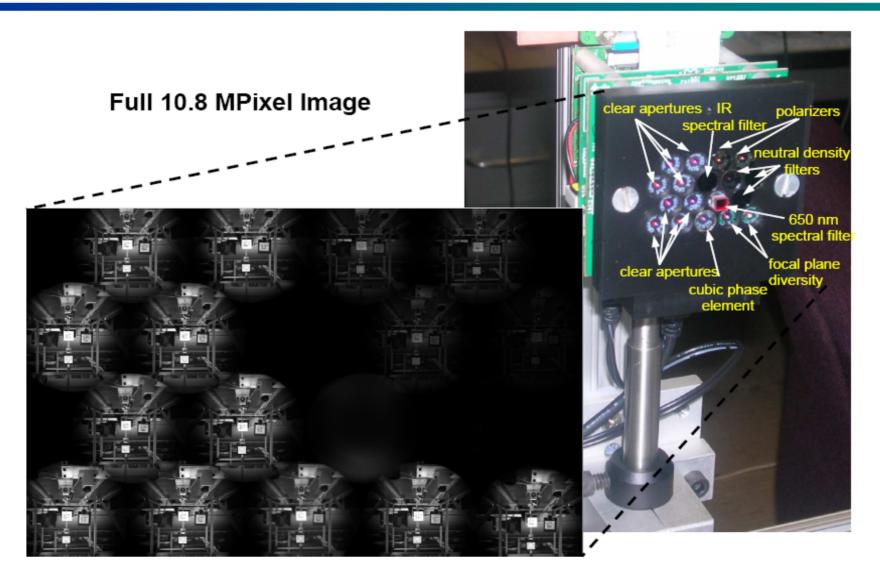
^{† &}quot;On the Application of Interference Methods to Astronomical Measurements" (Phil. Mag., July, 1890).

Automotive Analogy for Imaging Sensors

Horse-drawn Carriage

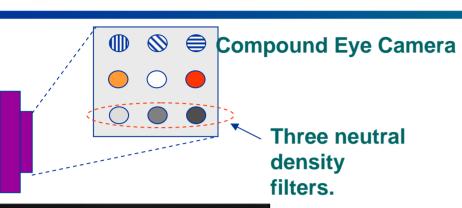
Horse-less Carriage

→

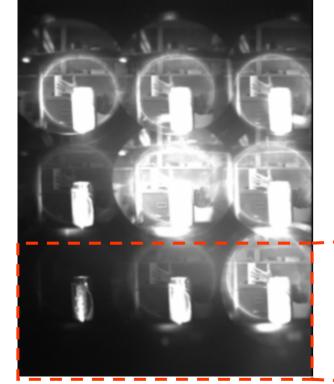

Specialization? Autonomy?

Film Cameras

Film-less Cameras
UNCLASSIFIED



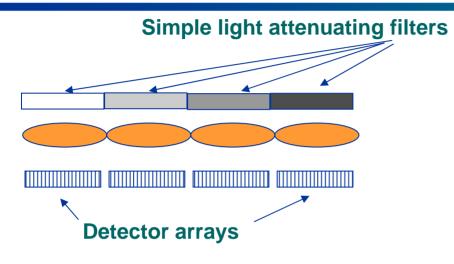
Multi-Aperture, Multi-Diversity Compact Imager: PERIODIC Seedling



PERIODIC Demonstration



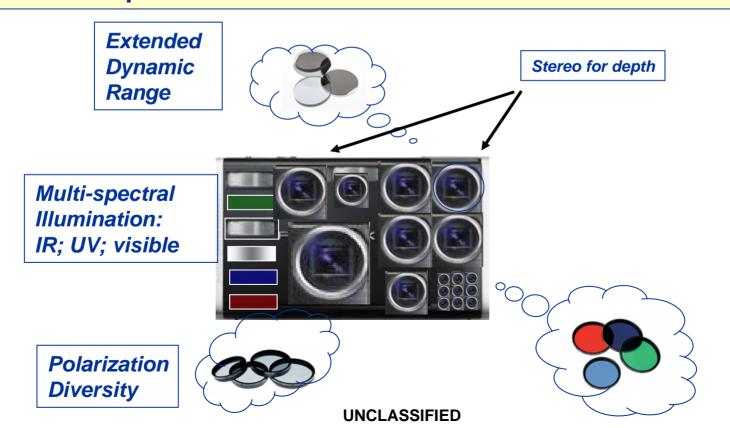

Combining subimages using three different neutral density filters can be used to improve dynamic range



Imaging of High Dynamic Range Scenes – Conventional vs. PERIODIC

- > Place different neutral density filters in different 'subimagers.'
- > Capture image
- > Perform image computation

Modenate Exposite entitle time and considered and c



Next Generation System CONOPS The "Swiss Army" Imaging System

Spectral

Diversity

- Multi-aperture architecture with dynamic diversity elements
- Multi-spectral, broad-band sensing (visible-LWIR)
- Multi-band illumination for chem-bio sensing
- Optimized Integration with post-processing and display
- Ultra-thin aspect ratio

Bottom Line

Computational Imaging Systems =

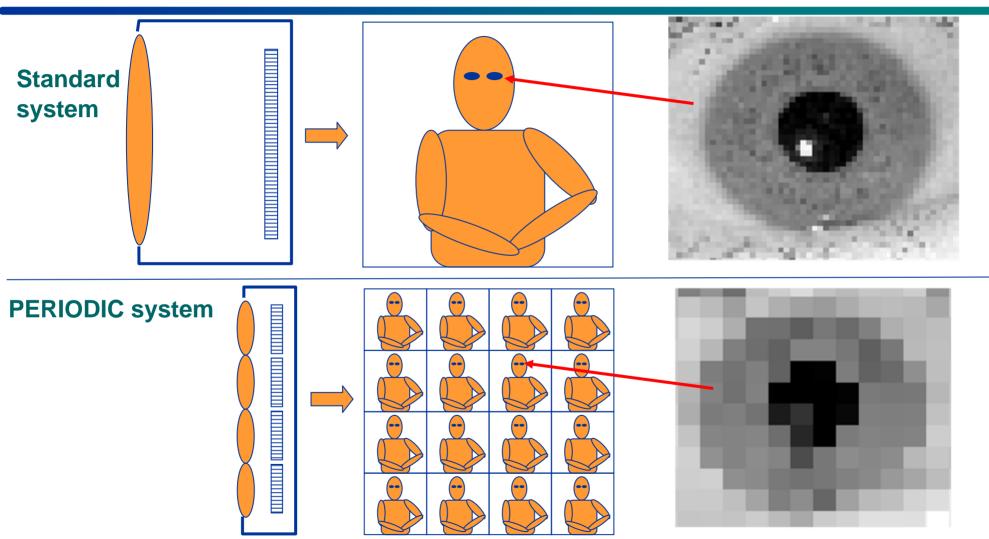
Nanophotonics + Megapixels + Gigaflops + Form Factor + Power

Jointly designed and optimized

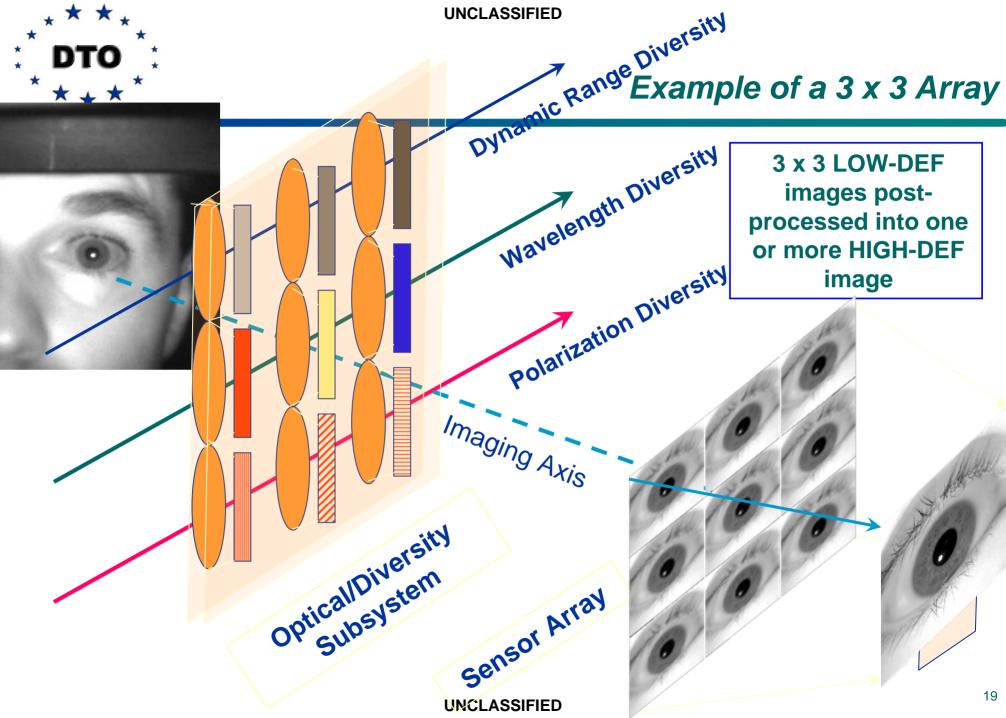
Mission Goal:

Purposeful, Semi to Fully Autonomous Sensing

Thank you



BACKUP



Form Factor Reduction

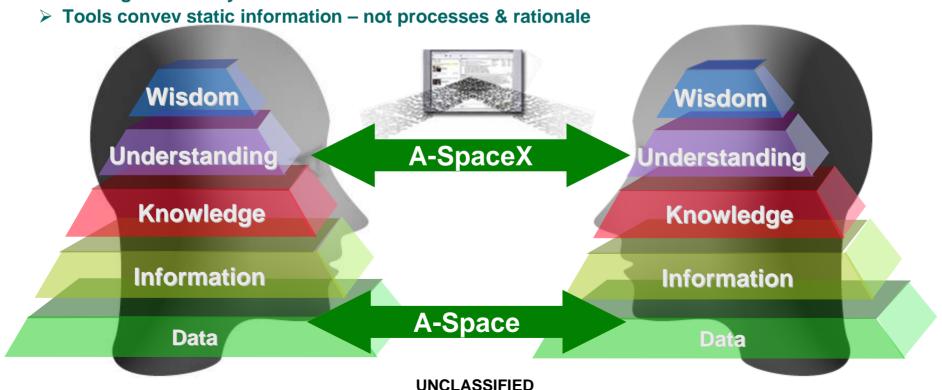
If the images are acquired such that they are shifted with respect to each other by subpixel amounts, the full resolution image can be restored subject to noise and other uncertainties.

UNCLASSIFIED

Digital Cameras....all shapes and forms! *But they all operate the same way

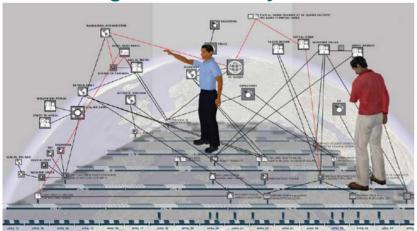
ASSIFIED

20



MMP Collaborative, Multi-INT Systems

Operational Problems


- □ Too much data not enough information!
 - > Multiple, poorly defined threats make it make it hard to know what is salient.
- ☐ Conventional visualizations do not readily support analytic processes
 - > Decision making highly branched & iterative characteristic of analytic processes
 - > Hypotheses abandoned today may be salient tomorrow
 - Context is key to framing and understanding the problem –
- ☐ Sharing is hard Understanding is collective!
 - > Sharing uncertainty is at odds with IC culture

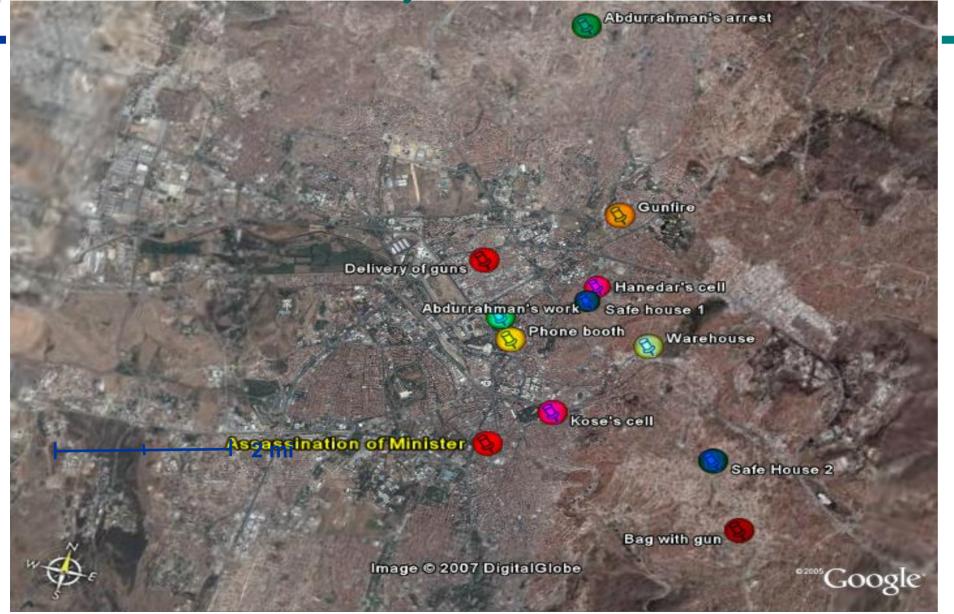
Opportunities

- ☐ Web-enabled Technologies
 - Modern & next generation browsers support advanced visualizations
 - Web technologies consistent with Services Oriented Architecture (SOA)
 - Multiple Visualizations readily derived from shared data sources
- **☐** MMRPG technology viable
 - > Readily available
 - > Next-generation analysts are comfortable

- Models maturing
 - Models as games,
 - Models as processes
 - > Products inter-operable
- ☐ Agent Technologies & Automation
- □ IC is making major commitments to upgrade infrastructure. (A-Space)

A-SpaceX has a unique opportunity to impact the future of the IC!

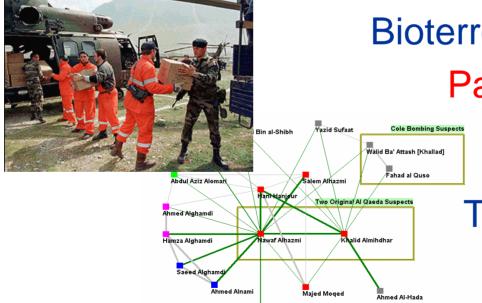
Example Environment



Geospatial Profiling for Counter-Terrorism

Geospatial Profiling for Counter-Terrorism
Case Study: Assassination of Turkish Minister

Proactive Intelligence Analysis



Why Proactive Intelligence (PAINT)?

Cyber attack

Weeks to recover

Bioterrorism

Pandemic in days

Terrorism Attack

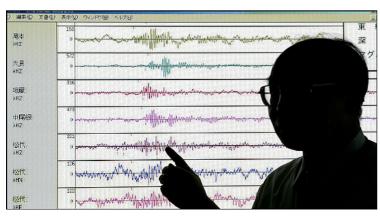
Disruptive Change

Proactive is Essential

Smallpox attack exercise without proactive warning or plans has dire consequences

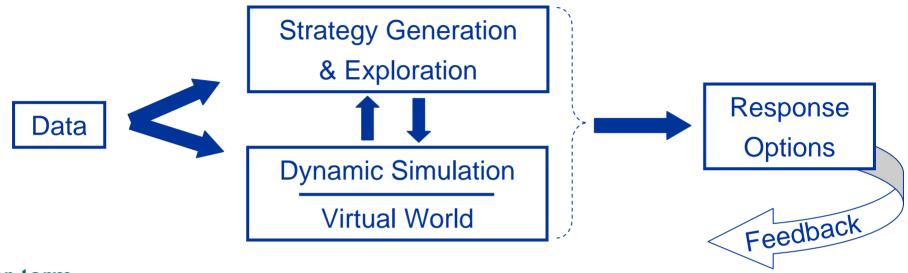
- >Rotterdam port, world's 2nd largest, closes
- > Polish citizens stream to Germany for scarce vaccine
- ➤ Debate on closing borders, quarantining cities, and limiting the movement of people
- >World Health Organization lacks authority

PAINT's Approach



Doomsday Clock moves closer to midnight by two minutes due to nuclear weapons programs in Iran and North Korea.

-February 25, 2007, Board of Directors of the Bulletin of the Atomic Scientists


 Explore strategies & identify response points

- Monitor test areas
- Disrupt supply chain
- UN trade ban re uranium enrichment
- UN diplomatic & economic incentives
- US financial sanctions

What's New in PAINT's Approach?

Near-term

Timely: Rapid ID of causal relationships in diverse data sets

Mid-term

Adaptive: Construct models to handle sparse & ambiguous data

Semi-autonomous: cultural, environmental & threat models formulated with "light

touch"

Integrated: Strategy tests with dynamic simulations & virtual worlds

Goal

Project future threat developments and identify response options

Strategic Challenges in the Asia-Pacific Region

Three Waves of Five...& Some Trends Ahead

LTG (Ret) Ed Smith Director, APCSS

1. The attraction of terrorism to those disadvantaged and with little hope.

- An opportunity for identity; a means to act
- Enablers:
 - Socio-economic gaps
 - Transnational crime
 - Globalization (seamless internet effectiveness)

2. The limiting effect of corruption, particularly within governments, throughout the region and the world.

- Pervasive
- Enervating
- Tolerated, too often by many

- 3. Political polarization leading to extremist views...AND diminishing shared values.
- Interest

 Identity

 Values clashes
- Strategic alignments—major actors
 - PRC-Russian security cooperation
 - PRC-South Asian nations
 - Entire region positioning, given PRC economy
 - US presence, a security ctr-weight

4. Disrespect due to a lack of appreciation for cultural/racial/ethnic diversity.

- Rooted in intellectual, ethnic, racial, social,
 & psychological arrogance
- Fundamental to collaborative progress
- Ldr-to-ldr relationships "decide the day"

5. Extremes in educational opportunities.

- Deeds, not words
 - Availability
 - Quality
 - Access
- Why not main effort collaborative prioritization?

1. Extremes in human security due to the growing have and have-not gaps the world over.

- Demographic profiles identify possible security threats
- Socio-economic trends are key

- 2. Interruptions in information-technology networks that impact global security.
- Info-age <u>absolute</u> dependence on IT, especially in the economic and military dimensions.
- Are "degraded-mode" operations still an alternative?
 - F-22s
 - World financial systems

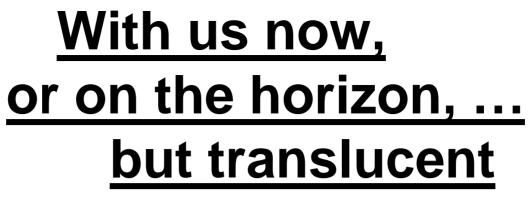
3. Environmental effects physically impacting large portions of the region/world due to unchecked global warming.

- <u>Fact</u>: global economic competition driving adverse environmental impacts
- Energy security gained using less environmentally threatening energy sources

4. Over-extension of multinational and multilateral forums intended to foster collaboration on security-cooperation opportunities.

- UN simultaneously in crisis & demand
- Many international orgs face calls for reform (UN, WTO,IMF)
- Shaping potential of Asia-Pacific forums...impacts?

5. Uncontrolled means of mass destruction and/or mass chaos.

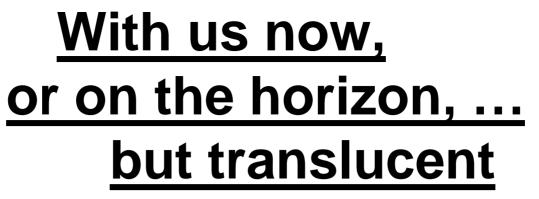

- Unraveling global nonproliferation
- Nuclear wpns: security asset or liability?
- Shock event→Chaos, in info age
 - Dirty bomb, or atk on nuclear reactor
 - Low-tech tactics also show potential

With us now, or on the horizon, ... but translucent

1. Conflict over scarce and valuable resources and/or disputed territory believed to contain such resources.

 For example, potable water in South Asia...or anywhere else

2. Balancing country X's demand for increased power and influence and the willingness of other major actors to accommodate this.


- PRC
- India
- Smaller countries on the rise (Vietnam)

With us now, or on the horizon, ... but translucent

3. Mutating pandemic disease among humans.

- "One in ten chance of human-to-human transmission in next ten yrs."
- World health orgs not as confident
 - Not "if" but "when"
- What type, where, by whom, & how much prep is enough?

4. Understanding, and managing, reactions to the perceived threat of information globalization to cultural identity.

- Pursued "inside out"
- Grounded in promise, not fear
- Transforming from power to coerce to power to aid

With us now, or on the horizon, ... but translucent

5. Leaders without a vision that serves the common good...the harder right.

How do we develop ldrs with such vision?

So What?

 If these are trends, how do we influence and shape them, to advantage? Or, mitigate those we cannot shape?

A couple final thoughts...

Final Thoughts

- Security challenges have always been complex, but perhaps the nature of the complexity today is shifting
- Ways (problem analysis), toward solutions, require "centering" highly dynamic, diverse knowledge/people relationships and their impacts on organizational potential
- Means must be adapted to applications in very different social & cultural frameworks
- Ends sought → conditions v. endstates

KNOWLEDGE DISCOVERY

From Situational Awareness to Bomb Damage Assessment

LTG (Ret) George A. Fisher
Oak Ridge National Laboratory

"Connecting the Dots"

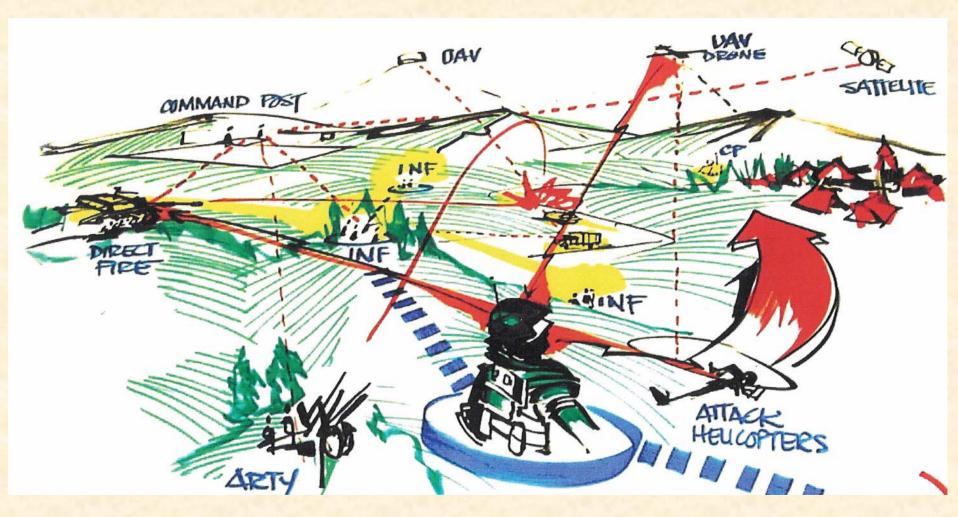
"All I'm saying is, now is the time to develop the technology to deflect an asteroid."

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

A Couple of Facts

Manual

The Brigade
Combat Team of
2015 can expect
3,178,800 sensor
reports per hour
in its area of
operations


Client Server

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

In 2006, the amount of digital information created was 3 million times all the books ever written

THE 2020 War Fighter

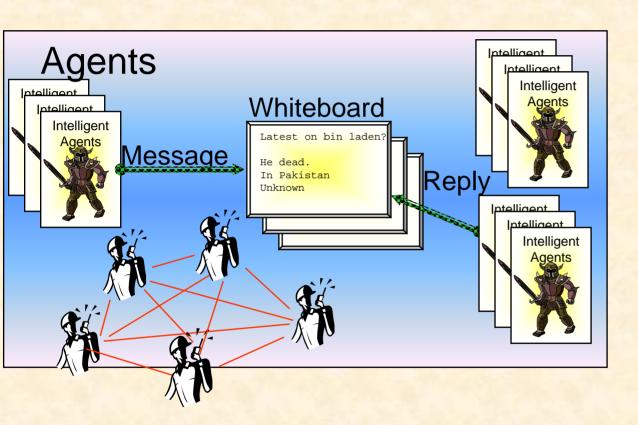
"Know what the Network Knows"

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Challenge - What to do with this?

- What is in there?
- Are there any threats?

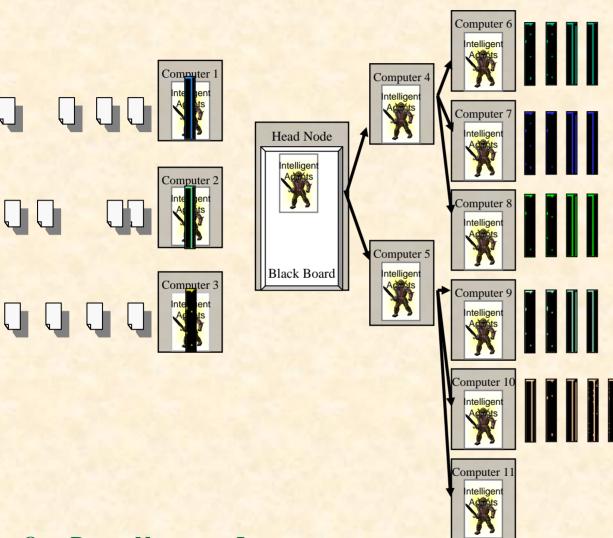
What am I missing?



Connecting the Dots

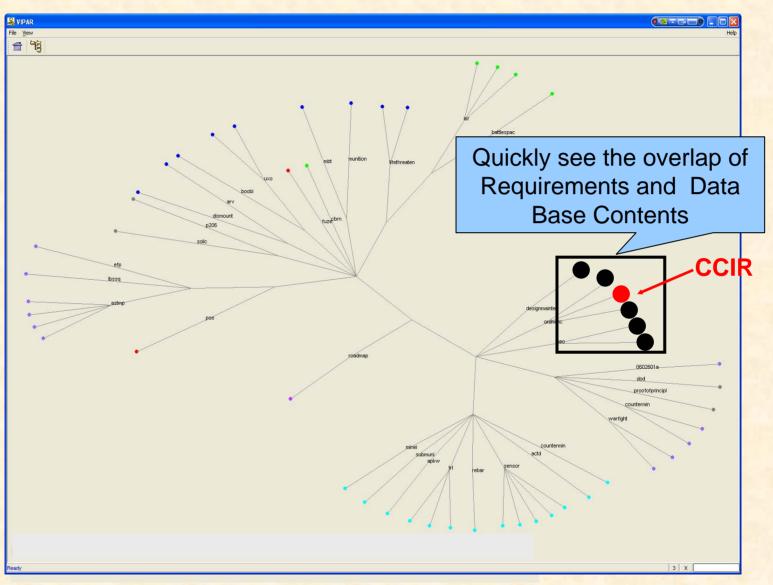
Organize the Find the Connect the Raw Information Information **Threats Documents** Iraq 雪嘴嘴雪 Nuclear materials Take Chemical **Action** Weapons Threats Potential **Targets** Money Laundering Training Camps What do we What are the What are they planning? How credible is the have? connections? threat?

Intelligent Software



Intelligent Agents

- Software processes
- Can communicate in unstable environments
- Form teams to solve problems
- Live, die, and reproduce to solve problems


Agent Approach

- Standard Approach
 11.5 Days
 - 8 minutes 24
 Seconds!
 2000 times faster
 With no loss of accuracy

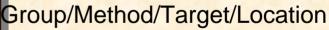
Results

Software Agent Applications 10,000 Documents **Best matches** to CCIR **Formulate Data Best match** Question to question Base Compare **Pattern Best matches Metrics Data** to pattern **Bases** Compare

Next Step: Adding DNA to Agents

Endurance Speed

Speed/Strength



Group/Method

Target/Location

Connecting the Dots

officers, includ

US naturalized citizen indicted for hiding

Cold war leaves a deadly anthrax legacy

Miller

6 Indonesians Barred From U.S.

Current and Former Military Officers

Pla By Wa Slevin ters

Radiation experts play out a frightening terrorist scenario — exploding a bomb laden with deadly radioactive materials.

on a watch list barring them from entering the United States, according to U.S. government officials. © EarthLink

Devs.

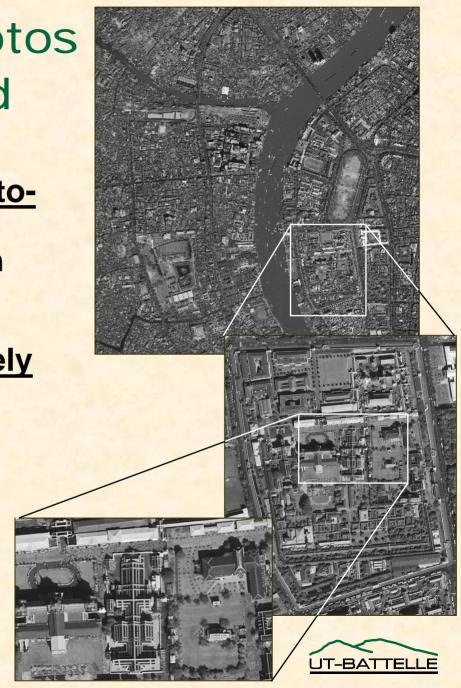
1988, germ scientists 850 miles east of Moscow were ordered to undertake their most critical mission.

Agents

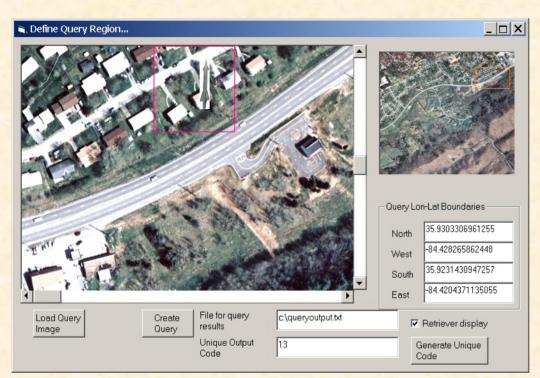
Threats

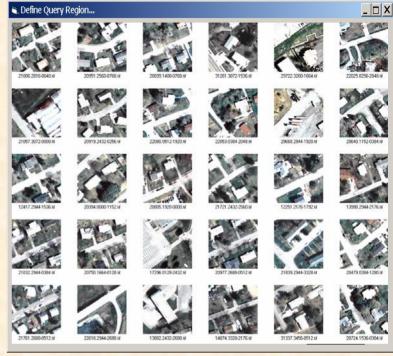
OSCAR High Performance Computer Cluster

Analysis


Synthesizing and Disseminating Information

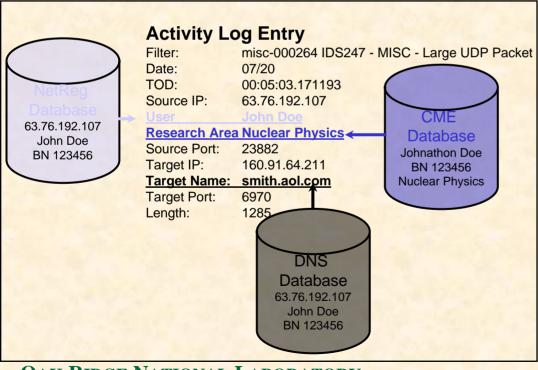
UT-BATTELLE

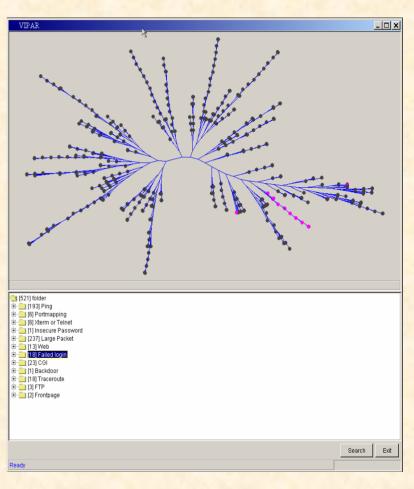

Decision


Screen Satellite Photos at Machine Speed

- Is your image repository <u>up-to-date</u> and <u>accurate</u>?
- How can you search through thousands of images in seconds?
- How can you comprehensively search based on:
 - Longitude and Latitude
 - Box on a map
 - Time
 - "Just like this one"

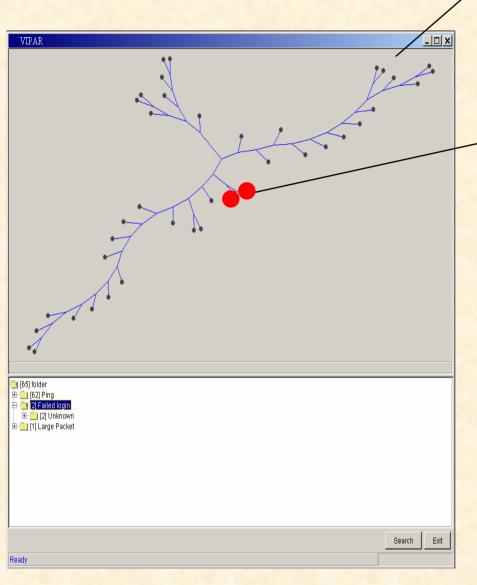
Find "Just like this one..."


Where is the missile?

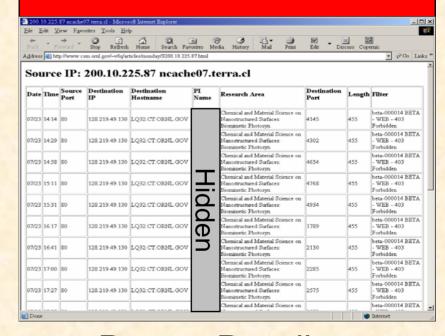


U. S. DEPARTMENT OF ENERGY

Cyber Security Relate Sensitive Research to IP addresses


- •1,000,000 suspicious records daily
- Critical Decisions
 - -Is someone trying to hack into the system?
 - –Are attack from "script kiddies" or state sponsored?
 - -What are they going after and why?

Caught in 30 Minutes!



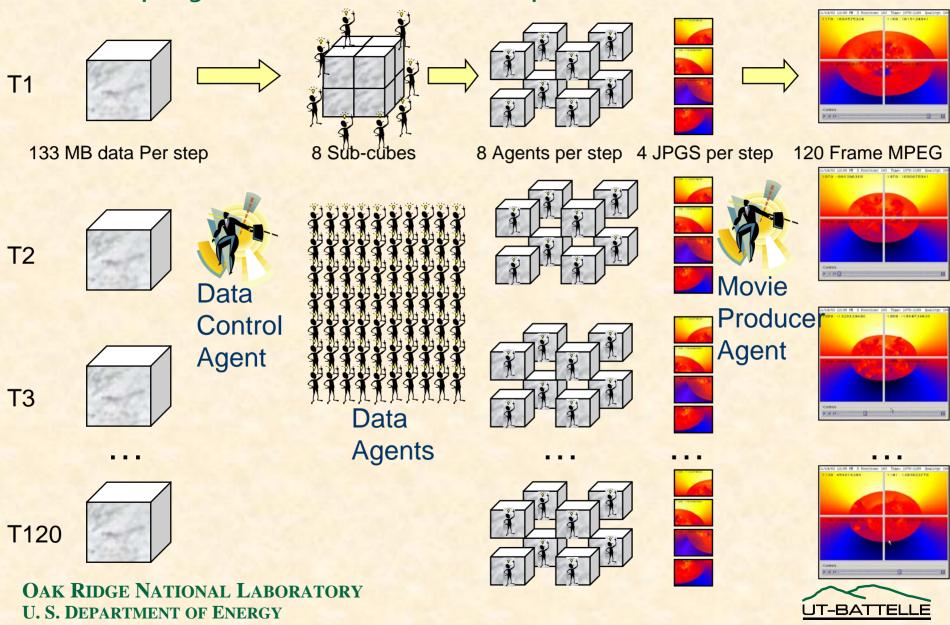
OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

45 "low and slow" pings from:

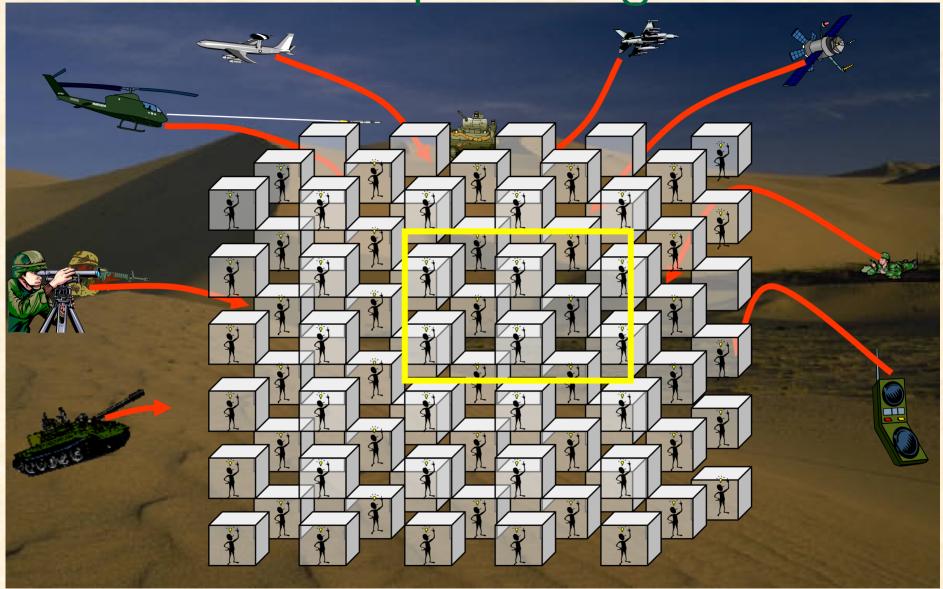
- –Country X
- -Country Y
- -Country Z

2 attacks on nanotechnology scientists

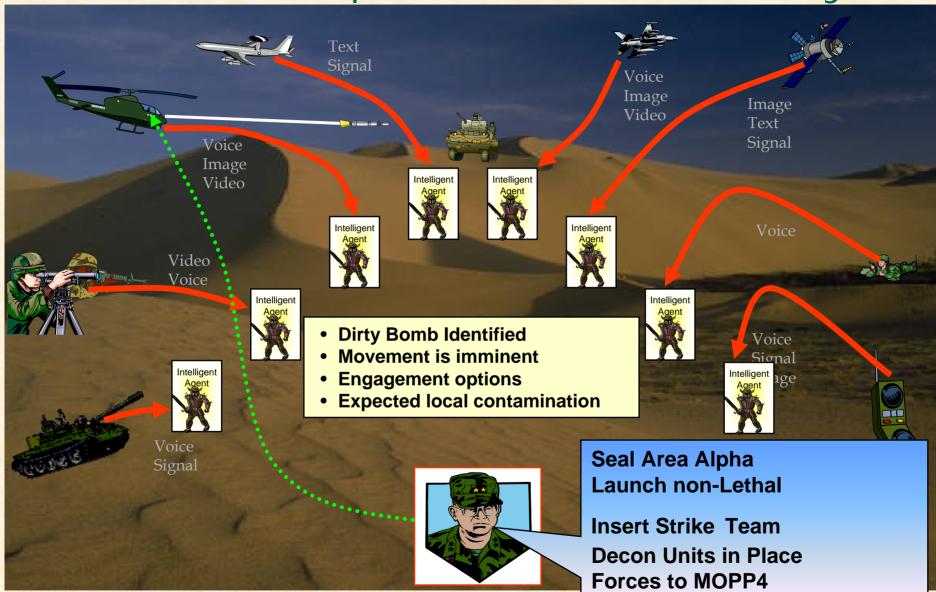
Patent Pending



Agent Example "Pictures from Data"


- 1 Terabyte of streaming astrophysics data
- 1000 agents analyzing
 - 120 time steps of 300x300x300 matrix for 5 variables
 - 33 million units density in 194 files
- Each time step governed by an oversight agent which redraws picture with most recent information

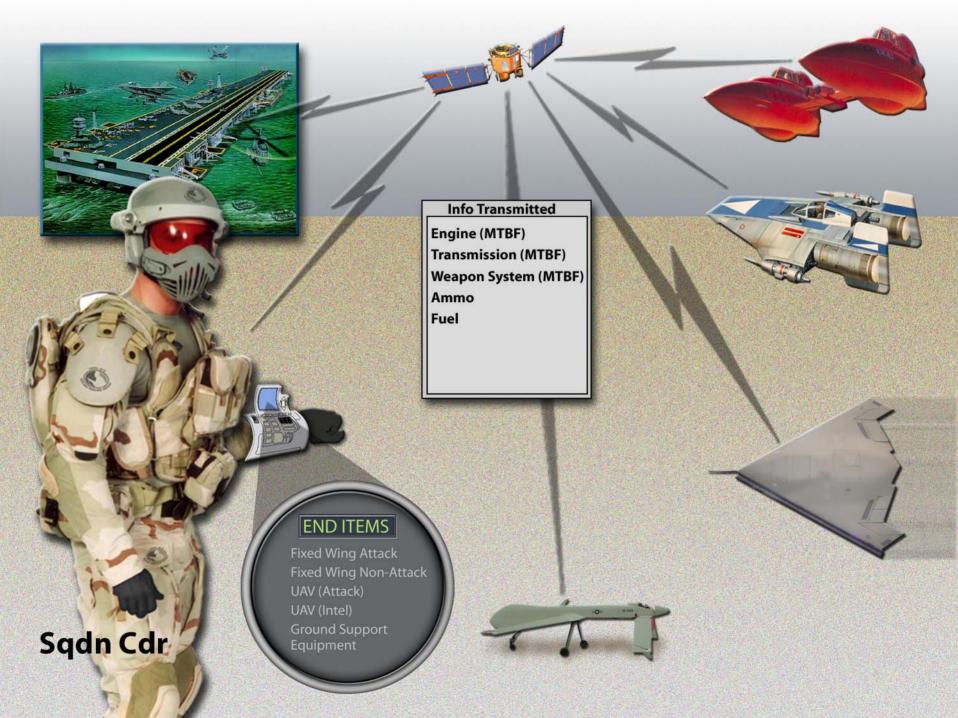
Astrophysics Common Operational Picture



Common Operating Picture

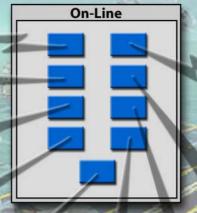
Future Battlespace - Forward Analysis

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


UT-BATTELLE

Knowledge Discovery

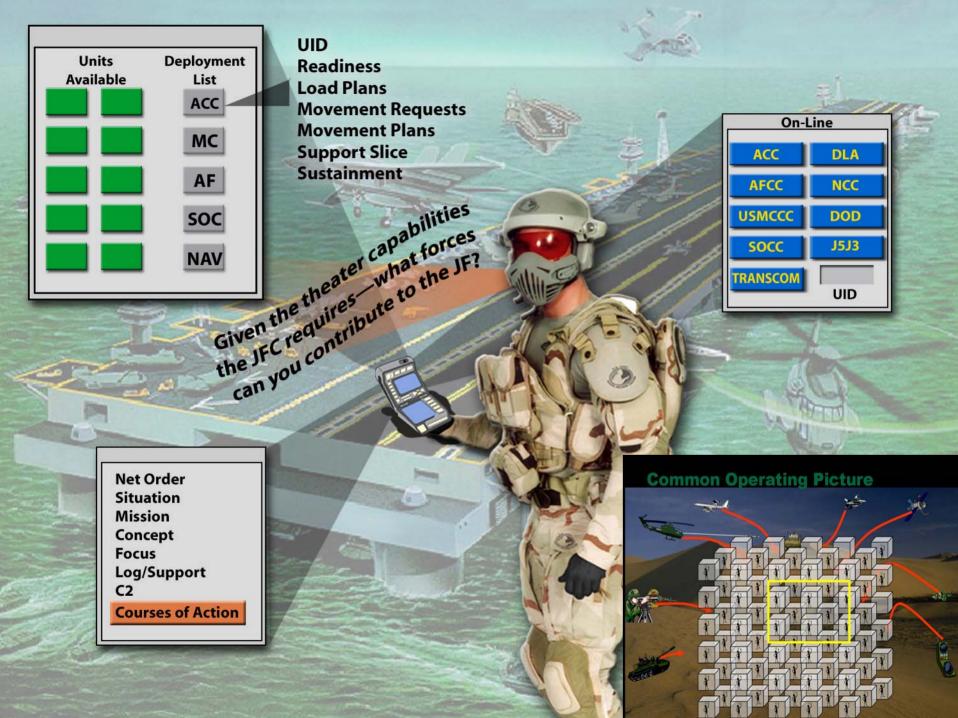
"The Art of the Possible"



Warning Order at 1200 Z

STES CON

17) 1790 dd



Day 5: Combat Power Fortaleza Teresina PARÁ Moçoró Araguaina NAS PIAUÍ Campina Grande PRA7II Porto Velho RONDONIA Feira de Santana **MATO GROSSO** Aracaju BAHIA Salvador Poconé Culabá Goiânia IVIA

Path to Success

- Vision the Capability
- Articulate the Development Path and Priority
- Leverage the niche Centers of Excellence

Solutions to Current Challenges: FY07-FY09

Major General Ted Bowlds

4 April 2007

AFRL Vision

Air Force S&T Vision

Anticipate, Find, Fix, Track, Target, Engage, Assess, Anything, Anywhere, Anytime

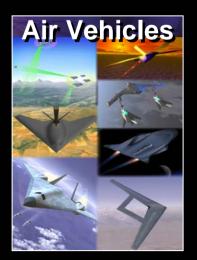
AFMC Vision

War-winning Capabilities...
On Time, On Cost

AFRL Vision

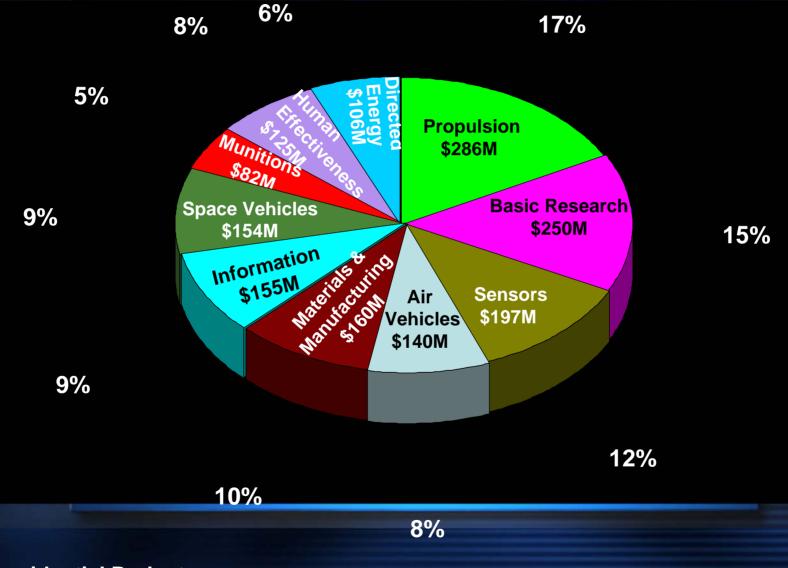
We defend America by unleashing the power of innovative science and technology

Core Work Areas



Human

Effectiveness



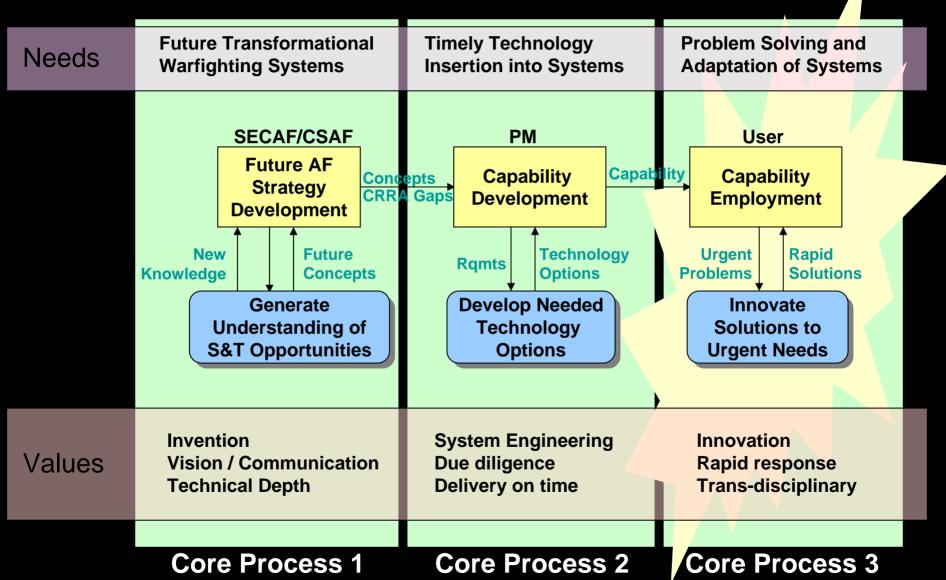
AF Budget Investment By Tech Area

FY07 Presidential Budget Values May Not Add Due to Rounding

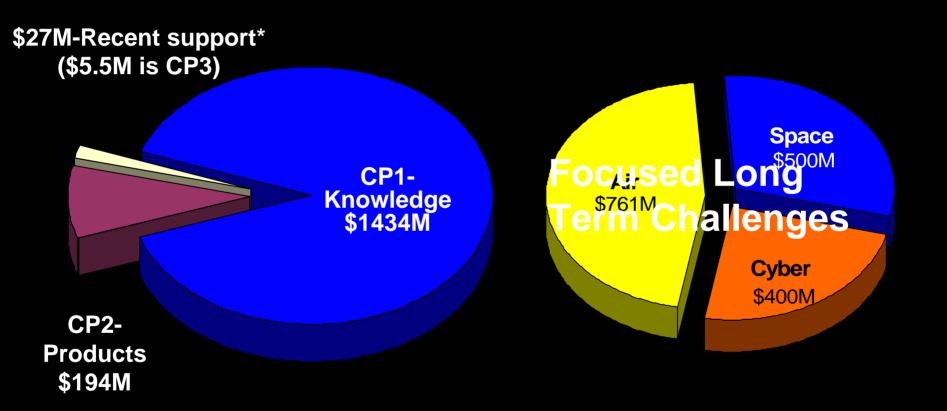

SPACE

CYBERSPACE

AFRL Customers



AFRL's Core Processes Aligned with Customer Needs



FY07 \$ in FY07 PB

By Area

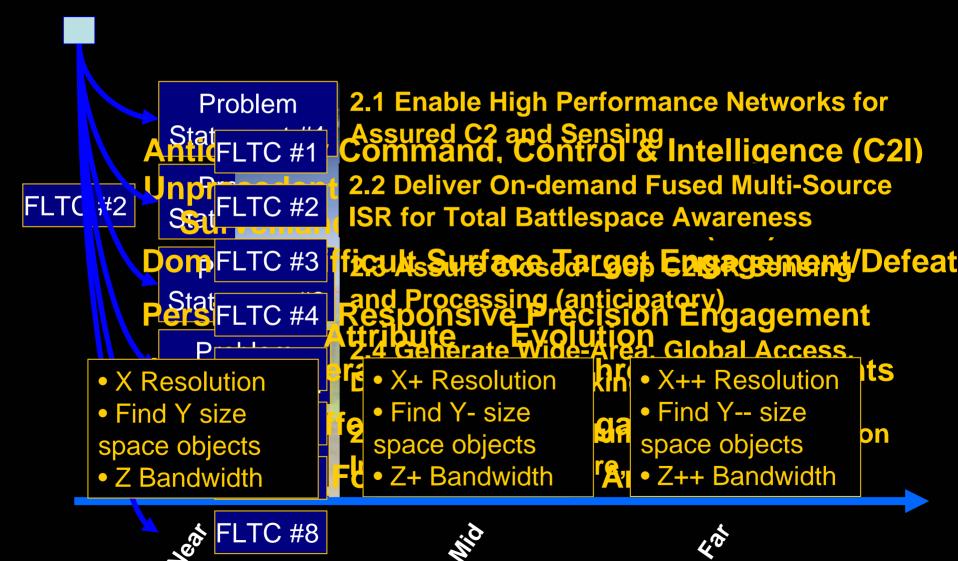
TOTAL: \$1.655 Billion

* Delivered to supporting current on-going combat operations

CYBERSPACE

Core Process 1 Focused Long Term Challenges

Focused blengs the organizeg qui (150 to 150 Antic Apparto An Assettle 41 Anything, Anywhere, Anytime



Many AFRL programs tied directly to the user's problems

FLTCs – Examined

FLTCs – Examined

FLTC #2

Unprecedented Proactive Intelligence, Surveillance, and Reconnaissance (ISR)

Problem Statement #2 2.2 Deliver On-demand Fused Multi-Source **ISR for Total Battlespace Awareness**

Mid-Term Attribute 2.2.1 Survivable, High-altitude, Long Endurance, **Multi-INT Sensing for Battlespace Awareness**

Product 2.2.1.1 Improved Light Aircraft Structures (VA)

Product 2.2.12 Structu vily integrated Aircraft Antennas (VA)

Internally

TRLMRI Prod Funded Program

Partially or Un-**Funded Program**

TRLMRL

Produ

Jointly Funded Program

TRLMRL

Externally Funded Program

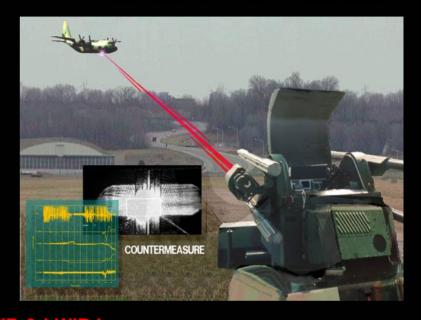
TRL Technology Readiness Level

Manufacture Readiness Level

Socialization Process to Date

- 20 Jun 06 ACC/A8 and ACC Staff
- ➤ 21 Jun 06 AFSPC/A3 and AFSPC Staff
- 26 Jun 06 AFSOC/A8/A5 and AFSOC Staff
- ➤ 27 Jun 06 AFFTC Staff
- ➤ 28 Jun 06 AETC/A5/A8 and AETC Staff
- ➤ 14 Jul 06 SMC/CC
- ➤ 20 Jul 06 AFC2ISRC/A8 and AFC2ISRC Staff
- ➤ 25 Jul 06 ESC
- 28 Jul 06 AMC/A5 and AMC Staff
- ➤ 3 Aug 06 DTRA
- ➤ 7 Aug 06 Air Staff A3, A8, AQR
- ➤ 30 Aug 06 NSSO S&T IPT
- ➤ 30 Agu 06 Air War College
- ➤ 31 Aug 06 AFSPC/CC
- 1 Sep 06 AF SAB
- **► 5 Sep 06** PACOM
- ➤ 7 Sep 06 ONR
- ➤ 11 Sep 06 N-81 Study Team
- 21 Sep 06 AFSPC

Socialization Process to Date


- 25 Sep 06 NAVAIR Process Council
- ➤ 28 Sep 06 AFSOC
- ➤ 5 Oct 06 Dir NASA Dryden
- ► 5 Oct 06 AFRL-AFIT Summit
- ► 6 Oct 06 AFSPC/CV Brief
- ► 19 Oct 06 DTRA
- ► 14 Nov 06 USSOCOM
- ➤ 30 Nov 06 ACC/AFC2ISRC
- ➤ 8 Dec 06 NASA HQs
- ➤ 19 Dec 06 ASC/XR
- ➤ 3 Jan 07 SAF/AQ
- ➤ 3 Jan 07 DDR&E
- ➤ 9 11 Jan 07 Deep Dive Workshop #1 DC
- ➤ 17 Jan 07 Cyber Command
- ➤ 31 Jan 07 Dr Erbsloe, AMC/ST
- 5 Feb 07 ASC Aeronautical Enterprise IPT
- ► 7 8 Mar 07 Oak Ridge National Lab
- ► 8 Mar 07 Idaho National Lab
- 14 Mar 07 NGA

Technology Insertion Day/Night EO/IR Tracker CM

- Locates and defeats / denies use of passive infrared fire control systems and active laser trackers on manportable and mobile SAM systems
 - Compatible with AFSOC/SOCOM platforms using DIRCM IR CM systems
- Detects threat IR sensors before weapon launch
- Provides threat location and possible threat classification
- Provides option to avoid, deny or counter the threat beyond missile launch range
- Denies enemy the ability to operate passively (forces RF use) and increases survivability
- Negates AAA and laser beam rider tracking

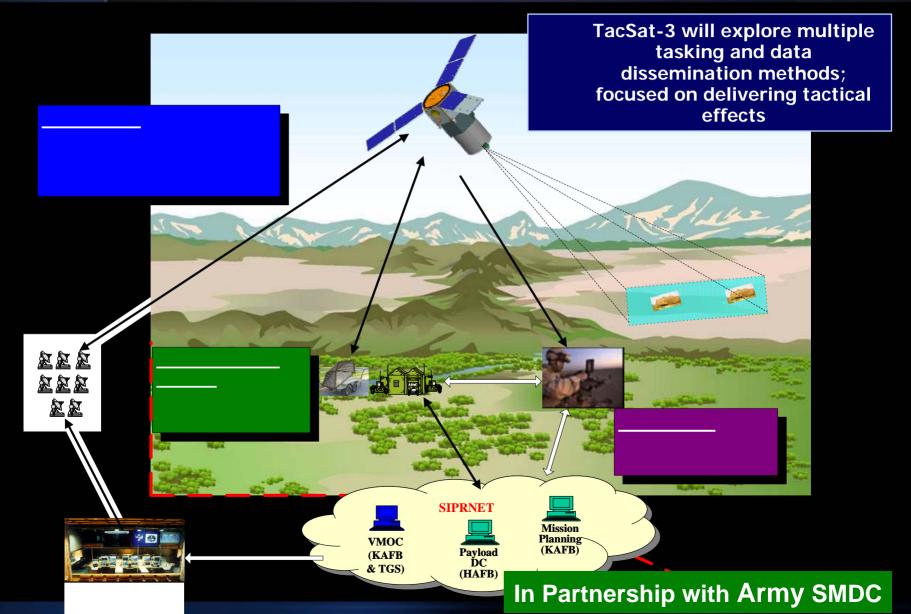
NWIR & LWIR Lasers

Polygon Mirror

Receiver

Electronics

Azimuth Platter


LWIR & NWIR

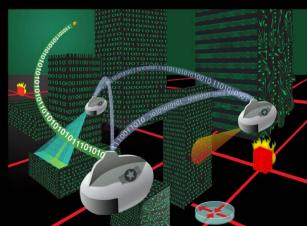
Fine Steering Mirror

Technology Insertion TacSat-3 Real Time Downlink & C2

BAO BRITES ATD SPIRAL 2

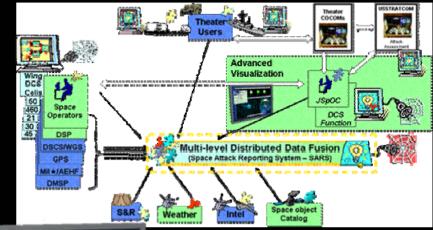
Technology Insertion

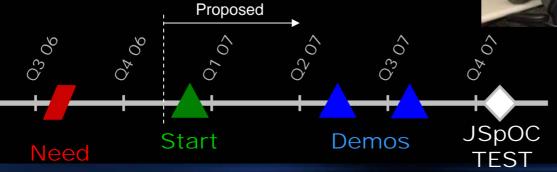
Trusted Tactical Weaponeering for Cyberspace


(PM - Rick Metzger, AFRL/IF)

- **Program objectives**
 - Combines disparate cyber programs throughout the AF and Intelligence community
 - Enhance C2 with remote cyberspace attack capabilities
 - Third leg of "C2 Triad"

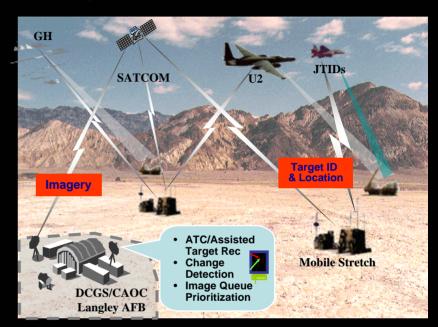
- Benefits to the Warfighter
 - Enables warfighter to dominate the cyberspace: strike anytime, anywhere
 - Global reach: unprecedented access beyond physical and geo-political boundaries.
 - Gathers intelligence for IPB
 - Acts as non-traditional ISR asset: supports BDA
- **Schedule**
 - Contract (Jan 06)
 - Demo (Sep 09)

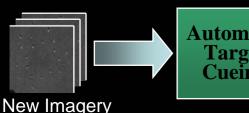



AFRL Rapid Reaction Project Space Situation Awareness

- ➤ Commander Joint Space Operations Urgent Need
 - Rapid ability to assess space situation using existing information
- ►70% Quick-to-Field Solution Identified
 - Data fusion and intuitive display of telemetry, ephemeris, and space weather data
 - Plan to validate in Joint Space
 Operations Center (JSpOC)
- ➤ Coordinating plan with broader community (AFSPC, SMC, etc)

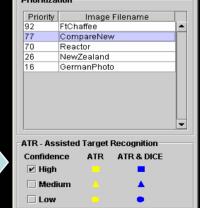
Rapid Response




Assisted Target Recognition for Time Critical Targeting

(PM – Lt. Amanda Martin, AFRL/SN)

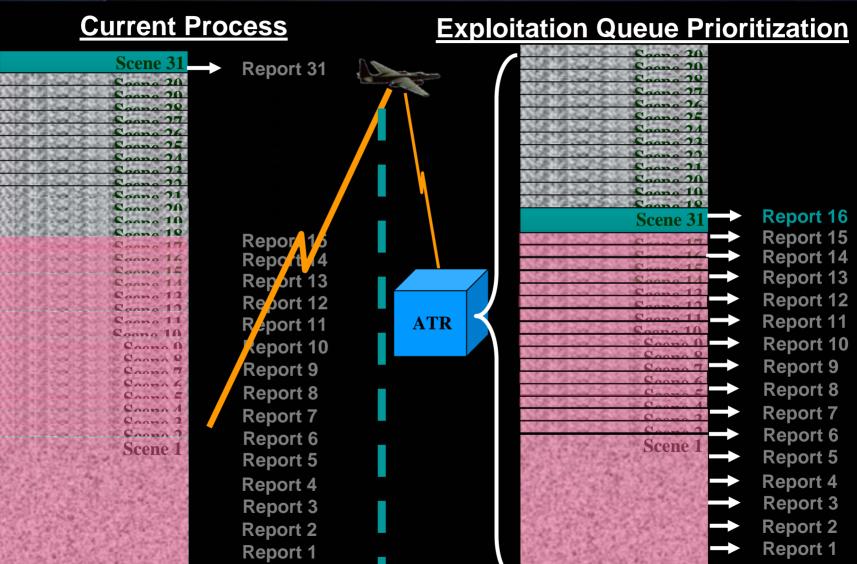
- Dynamic high value targets are only vulnerable for short periods of time
- Image Analysts are responsible for ever increasing, large volumes of data
- Solution
 - Automatic Target Cueing (ATC)
 - Automatic Target Detection
 - Assisted Target Recognition
 - **Change Detection (CD)**
 - Compares images collected at different times to identify change.
 - **Image Prioritization.**
 - Sources of information are correlated and images are most likely to contain targets are identified.


Automatic Target Cueing

Change Detection ATC/CD

Reference

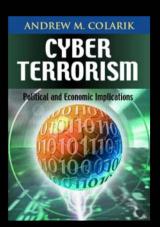
Imagery


Image

Potential ATR Uses – Shorten Timelines

Key Observations

- Collaboration a must
- Direct warfighter-scientist interaction essential
- Put high risk efforts in lab, not in programs


AFRL Rapid Reaction Project Cyberspace

- Addressing urgent needs for MAJCOMs (PACOM) and soon to be:
 - Cyber Command
 - ISR Command
- Understanding the urgency for rapid action within the cyber arena
 - Access, stealth and persistence
 - Cyber tracking technology
 - BDA/IPB
 - PSYOPS
 - Cybercraft
 - Anticipatory modeling of human behavior
- Identified CP3 projects
 - Information Support Server Environment Guard
 - Web Enabled Timeline Analysis
 - DODIIS Trusted Workstation
 - Joint Targeting Toolkit

Core Process Alignment with Customer Timelines and Needs

SECAF, Chief - long view, strategic planning

PM, Industry/Product Center – next generation, acquisition timelines

Warfighter - day-to-day, employing capabilities

2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023

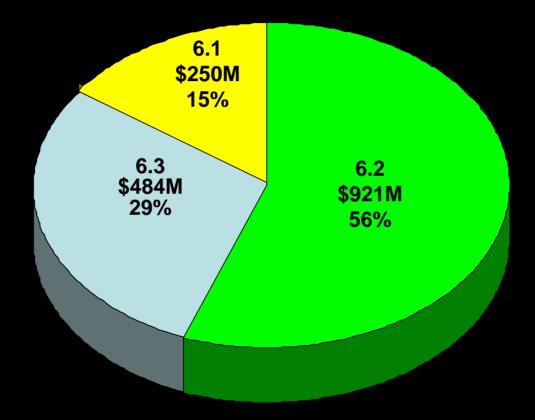
rapidly deliver technical innovation, driven by warfighter emergencies – <u>reshape today's battles</u>

Core Process 3

develop technology options that meet the needs of capability developers – <u>shape today's Air Force</u>

Core Process 2

CP2


conduct long-term research, driven by a bold technology goal – <u>shape the future Air Force</u>

Core Process 1 CP1

AF Budget Investment By Budget Activity

TOTAL: \$1.655 Billion

AFRL Technology Transitions to F/A-22

Low **Observables Technology**

Advanced Avionics

Mission Integrated **Transparencies** Metallic

Ultra

Reliable

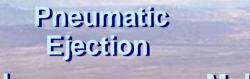
Radar

Advanced Structures **Thermoplastic Composite Structures**

> **Advanced Engines** for Non-A/B Supercruise

Weapons Launcher

Integrated Flight Control


2D Thrust Vectored Nozzles

\$900M S&T Investment in 1970s - 1990s

AFRL Technology Transitions to F-35

Flight Control
Development

Multi-Function Integrated RF System

X-35

Affordable, Unitized Composites

Diverterless
Supersonic Inlet

JSF Integrated
Subsystems Technology
& More Electric

Engineering & Campaign Simulations

IHPTET & Materials for F135 & F136

AFRL Technology Transitions to UAVs

Electric Actuators

Automatic Collision
Avoidance

UCAY

Operator-Vehicle Interface

Multifunctional Structures

Low Cost Structures

Reliable Autonomous Control

Antenna Integration Testing

Continuous Moldline Technology

Aerial Refueling/Rearming

Miniaturized Munitions

Advanced Targeting

Command, Control, & Communications

Small/Micro UAV
Development

Revolutionary
Manufacturing
Processes

Unusual
Configuration
Aerodynamics

Advanced Propulsion Integration

AIK

SPACE

CYBERSPACE

AFRL Technology Transitions to Space

Propulsion/Propellants

Electric Power - Solar, Chemical & Mechanical

Communications

Radiation Hardening

Antennas

Synthetic Aperture Radar

> **Electro-Optic** Sensors

Signal Processors

Microelectromechanical Systems

Satellites

Ground Processing

Structures & Materials

AFRL Information Technology Transitions

AFRL Technology Transitions to Munitions

GPS/INS Guidance Solutions

IMU Miniaturization

& Cost Reduction

Smart & Survivable Fuzes

Compressed Tail Kits

Compact, Extended Range Wing Kits

Anti-Jam Technologies

Enhanced Blast Explosives

Miniaturized Fuzes Lethality/ Vulnerability
Modeling

Component Test & Analysis

High Fidelity

Design Tools

High Strength Warhead Cases

Optimized W/H
Geometry
for Penetration

System Demonstrations
Insensitive Munitions

AFRL Technologies Support Operation Iraqi Freedom

The second secon

- Battlefield Air Operations Kit
- Anti-Jam GPS
- Massive Ordnance Air Burst
- Panoramic Night Vision Goggles
- CRASH Prompt Agent Defeat
- Surface Target Ordnance Package
- Laser Eye Protection

AFRL Human Effectiveness Technology Transitions

Night Vision Systems and Training

Aerospace Auditory Protection with Communications

Helmet-Mounted Multi-Sensory Displays

Detection and Neutralization of Biological/Chemical Hazards

Non Lethal Weapon Bioeffects **Laser Eye Protection**

Aircrew Accommodations, Escape, and Safety

Information Visualization and Decision Aiding

Fatigue Countermeasures

Distributed Mission Operation Systems and Skills Training

AF Office of Scientific Research

- Physics & Electronics
- Mathematics & Space Sciences
- Aerospace & Materials Sciences
- Chemistry & Life Sciences

Air Vehicles Directorate

- Sustaining Today's Fleet
- Unmanned Air Vehicles

 Space Access & Future Strike Technologies

Directed Energy Directorate

Lasers

Advanced Optics & Imaging

High Power Microwaves

Human Effectiveness <u>Directorate</u>

- Warfighter Training
- Crew System Interface

- Bioeffects & Protection
- Deployment & Sustainment

Information Directorate

- **►**Dynamic Planning & Execution
- Global Information Enterprise

► Global Awareness

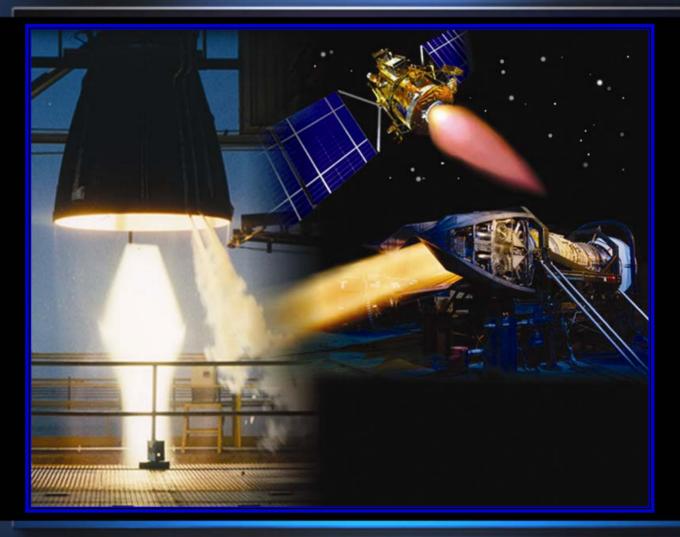
Materials & Manufacturing Directorate

- Metals, Ceramics
- Polymers, Composites, & Coatings
- Laser-Hardened & Sensor Materials
- Manufacturing Technology
- Non-Destructive Evaluation
- System Support

Munitions Directorate (MN)

Precision Munitions

Alternative Effects Weaponry


Counterproliferation

Propulsion Directorate (PR)

Turbine Engines

Liquid & Solid Rocket Power

Fuels & Lubricants

Sensors Directorate (SN)

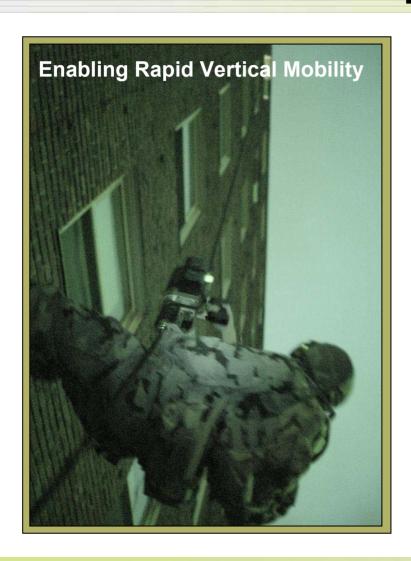
- Radio Frequency Sensors & Countermeasures
- Electro-Optical Sensors & Countermeasures
- Automatic Target Recognition & Sensor Fusion

Space Vehicles Directorate

Space-Based Surveillance

Counterspace

Space Capability Protection


Space Access

The ATLAS Powered Rope Ascender

Student Technology Transition

- -Fall 2004: Team ATLAS Enters MIT-ISN Soldier Design Competition
- -Spring 2005: Working Prototype wins 3rd Place *Atlas Devices, LLC* Incorporates, files patent
- -Summer 2005: Demo at Infantry Center at Ft. Benning
- -Since then: 3 more patents, Partnerships, further iterations, and contract with US Army Rapid Equipping Force

The Device

Original Challenge: 50 ft in 5 seconds with 250 lbs

-Device Weight: <25 lbs!

-5 kW Mechanical Output in 25 lb package

Team ATLAS Original Design:

-Similar to Cordless Power Tool

-High Output DC Powertrain

-Innovative Capstan Mechanism

-Achieved 50 ft in 7 seconds with 250 lbs

Current Model: SRA03-1

-17 lbs total weight

-350 lbs at 5 ft/sec

-600 ft vertical per charge

$$T_1 = T_2 e^{(\mu\theta)}$$

Multiple Iterations, Multiple Uses

ATLAS DEVICES

Powered Ascent

Rescue, Towing

Equipment Hauling

...and More

..

- Ship Boarding
- •Maritime Rescue
- Obstacle creation
- & removal
- Gate/door breaching
- Cave exploration
- Maintenance access
- Industrial load positioning
- •Helicopter rescue
- Portable winching
- Minefield Raking
- •IED Removal

. . .

Current Focus

- US Army Rapid Equipping Force Delivery
- Development of further iterations for Specialized Applications
- Upgrading capabilities: Lighter-Weight, Smaller, Faster
- Graduation
- Further sales: Small-batch orders of the SRA03-1 for testing, evaluation & refinement

ATLAS DEVICES is:

Tim Fofonoff

- Ph.D. Candidate, S.M. Mech. Eng. MIT
- Member of MIT ISN and BioInstrumentation Lab
- Winner of 2006 \$50K MIT Hatsopoulos prize

Bryan Schmid

- S.M., S.B. Mech. Eng. MIT
- Serial Entrepreneur
- Padmakar P. Lele undergraduate teaching award

Nathan Ball

- S.M. Student, S.B. Mech. Eng. MIT
- All American pole-vaulter
- Winner of 2007 \$30K Lemelson-MIT Student Prize

Daniel Walker

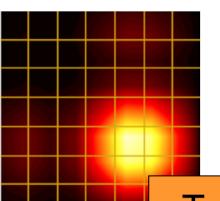
- S.M. Student, S.B. Mech. Eng. MIT
- Experienced climber and rescue instructor
- Former MIT outing club president

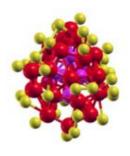
nate.ball@atlasdevices.com Mar 2007

Emerging Technologies from the Army-Funded Institute for Soldier Nanotechnologies (ISN)

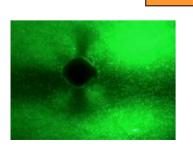
by MAJ Rex Blair
Harvard Applied Physics Graduate Student and
Uniformed Army Scientist at ISN

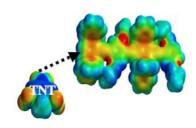
Harvard
School of Engineering
and Applied Sciences


Boots to Benchtop...
and Back...


Rex.Blair@us.army.mil Mar 2007

Institute for Soldier Nanotechnologies MISSION





To dramatically improve the survivability of the Soldier by working at & extending the frontiers of Nanotechnology through fundamental research

ISN Research to Enable Key Soldier Capabilities

ISN Dedicated Facility

State of the art instrumentation Multidisciplinary

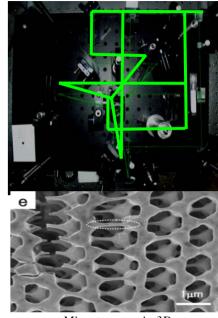
- 40 Faculty (8 Departments)
- 80 Grad students
- 30 Post-docs
- 2 Uniformed Army Scientists
- 4 Civilian Army Scientists
- 8 Industry Visiting Scientists

Industry Consortium

Army S&T Labs

Rex.Blair@us.army.mil Mar 2007

ISN Research to Enable Key Soldier Capabilities



- Protect:
 - Lightweight, strong structural materials
 - Ballistic + blast protection
- Detect unseen threats:
 - Explosives, chemicals, biotoxins...

- Adaptive, multifunctional materials
- Soldier performance monitoring (medical status)
- Injury triage and *treatment for survivability*
- Improve Performance:
 - Mechanical actuators: "exo-muscle"
 - -Situational awareness
 - Give individual Soldiers *small-unit* capabilities: chem-bio, awareness, far forward medical care

Soldiers are FIRST customers for improved protection

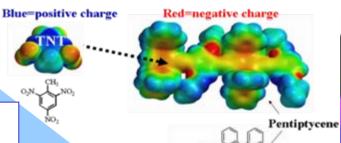
Microtrusses via 3D photolithography

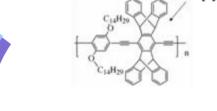
Science Making a Difference for Soldiers: FIDO Explosives Detector

MOLECULAR ENGINEERING:

designed molecules

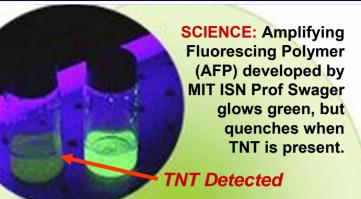
OPTICAL ENGINEERING:


integrated Detector/Sampler Contaminated Nano AFP Coating Capillary Waveguide Contaminated Air


uorescence

REPACKAGING:

from DARPA Dog Nose concept to real Warfighter Device



Hidden explosives give off traces of chemicals, which may be detected.

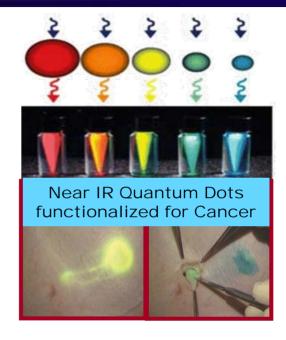
Assessments:

USMC in Iraq (2004), ATEC in Iraq (2005) **Procurements:**

SOCOM (2005),

PMs (2006) for handheld + robot-integrated

Mar 2007 Rex.Blair@us.army.mil

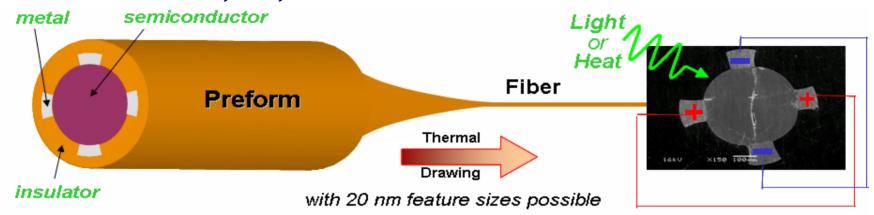


Projects with Medical and Other Military Benefit Can Speed Technology <u>Adoption</u> (more than "<u>Availability</u>"

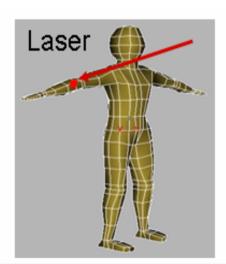
- Near IR Quantum dots are functionalized for cancer, injected into patient; migrate to cancer cells (Bawendi)
 - Surgeon assesses Near IR image before a single cut
 - Cluster == much cancer, few dots == less surgery
- MEMS Microchip addresses Hemorrhagic shock (Cima)
 - Enables rapid drug delivery
 - Military is "lead user," leverages FDA approval process

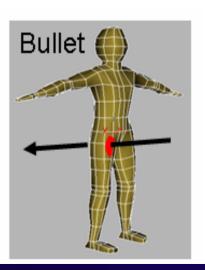
Explore implant (long term) and "Epi-Pen" (short term) types of delivery

Leveraging med research & partners: Saves lives + grows market + accelerates tech adoption == reduces costs + risks for Soldier applications


Fiber Web Linear Sensors

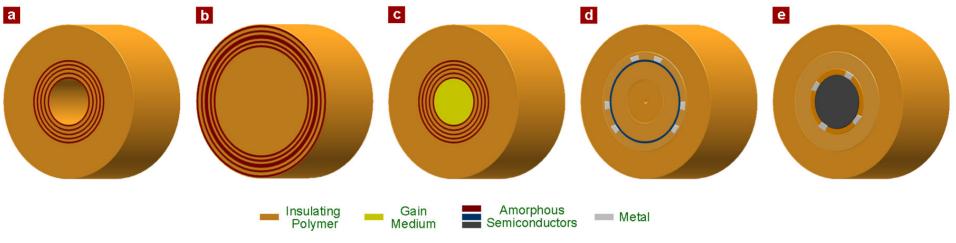
Optoelectronic fiber-devices for light, heat, & acoustic sensing:


Full-body sensing (Photonic Band-gap Fibers)— new paradigm fibers & fabrics that can see, feel, hear...


Full Body ID;

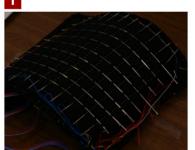
Laser-to-Uniform Non-RF Communications;

Improved MILES


Full Body Thermal Sensing *Remote Triage*



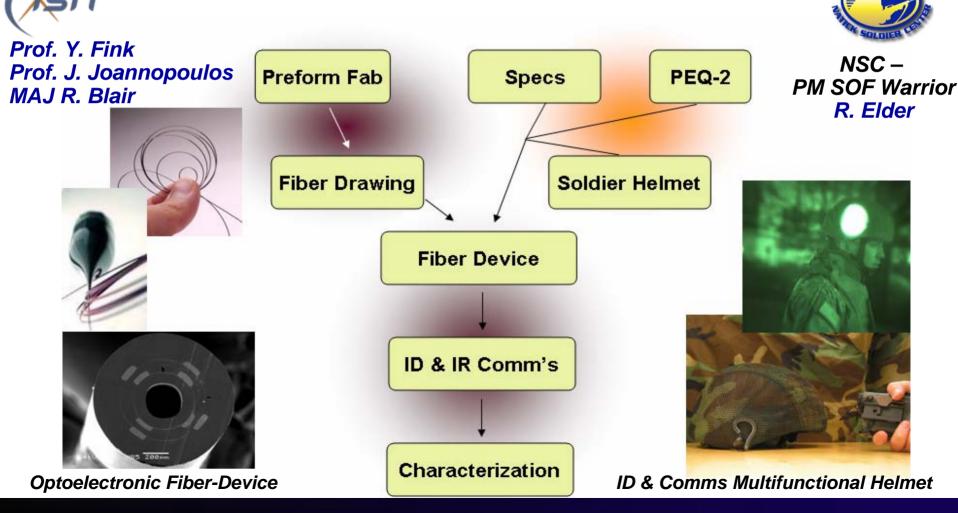
Fiber Web Linear Sensors: Tunable Metal-Insulator-Semiconductor Fiber Devices



Optical cavity fibers

Surface emitting fiber lasers

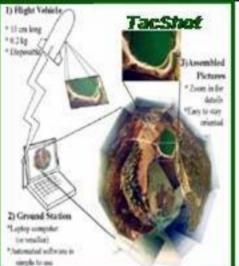
Thermal detector fibers


Optical detector fibers

ICOM-H Identification & Communication Helmet Prototype

Design, fabricate, and implement an optoelectronic fiber-device covering for combat ID and line-of-sight IR communication

ICOM-H Identification & Communication Helmet Prototype



Be Alert for Opportunities: MIT ISN Soldier Design Competition

COL Terry Clemons, QM DCD & COL Ernest Forrest, TSM-Soldier, look on as Team TXI demo their novel parachute canopy release mechanism

CSM Michael Kelso & COL Forrest examine TacShot's rocket-based photography system

Team Surreptiles, with COL Ted Johnson (center), show off their check for placing 2nd in the SDC finals

ISN Soldier Design Competition: Dealing with Success

Directional Gesture Communication System

SDC-1: Digitized Hand-Arm Signals with Personal Direction Reference: Incorporated as RallyPoint, Inc., won 2 Army SBIRs (\$750K) for **Future Force Warrior (FFW) Handwear Computer Input Device**

Army & Marine Challenges Ensure relevance ATLAS Powered Rope Ascender

USMA Team Supercharged

MIT Team Xitome: Kailas Narendran, CEO

SDC2: Battery Power Scavengers:

PEO Soldier -2 designs (MIT + **USMA) for Soldier** field testing by Fal 2005 (\$250K); FY07 contract for Iraq

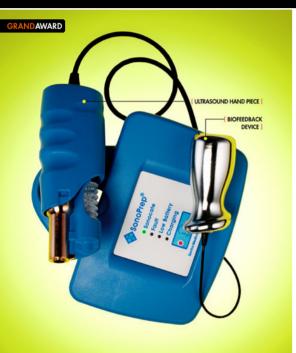
Goal: Involve undergrads in ISN

- → Solve real problems, to help Warfighters
- →Involve military: USMA, mentors, judges
- → Innovate to make a difference sooner:

technology for Warfighters

Mar 2007 Rex.Blair@us.army.mil

Broader Impact & Media Coverage



POPULAR science

2004

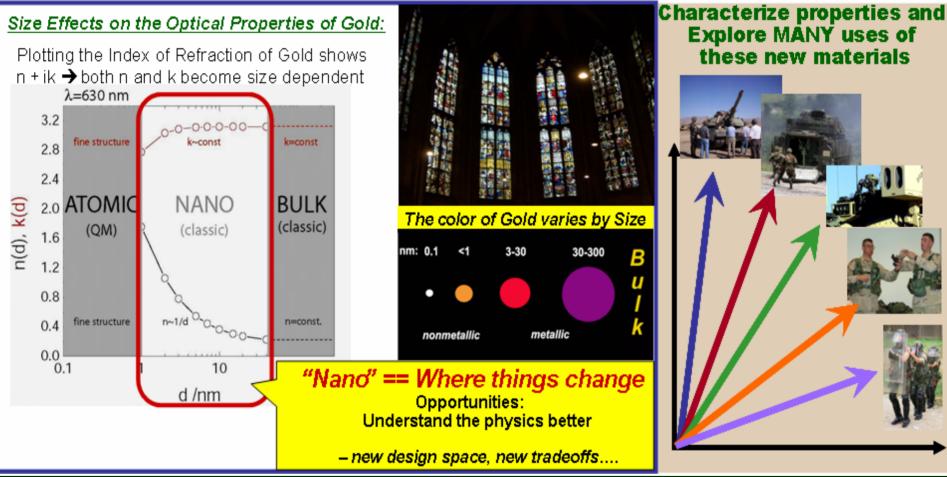
SonoPrep Skin Permeation Device Injecting drugs with acoustics—not needles

SBIR: SonoPrep
Needle-less drug
delivery for vaccines
-- future battlesuit

ATLAS / Nate Ball:
MIT-Lemelson \$30K
Inventiveness Award;
PBS Design Squad;
Army Rapid Equip Force
\$120K Procurement of
ISN SDC-award winning
ATLAS Powered
Rope Ascenders

ttp://wbztv.com/video/?id=29313@wbz.dayport.com

-- current needs


www.atlasdevices.com ENABLING RAPID VERTICAL MOBILITY

SHOW #1

ISN: Building Understanding of a New Class of Materials with a Human Customer in Mind

Define Parameter Space of new nanotechnologies -Don't target a single specific application

Soldier Capabilities Enhancement: Technology from the ISN This Decade

Improved Performance:

- 'Exomuscle' actuators
- Situational Awareness (SA) from Quantum Dot thermal detectors & conformal computing displays

Improved Protection:

- Sense unseen threats: chem/bio
- Nano-enhanced protective Materials (Transparent Armor, flexible protective materials)
- Smart coatings
- Smart materials with dynamic, switchable surfaces

Improved Soldier Capability:

- Soldier bio-med: far forward triage & treatment (Needle-less drug delivery, dynamic splints...)
- Give individual Soldiers *small-unit* capabilities: Ubiquitous sensors, SA...

Improved Development Tools:

- Advanced Modeling & Simulation
 - New Materials Characterization,
 Design and Test Tools
 Nano manufacturing

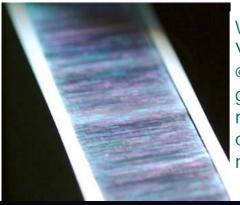
Broader Enhancements

- Nanoscientists work for Soldiers
- Nano-systems engineering know-how Commercial Apps for Soldiers, Firs
- Responders (via Industry Partners, Smal Businesses, Soldier Design Competition
 - Unexpected advances

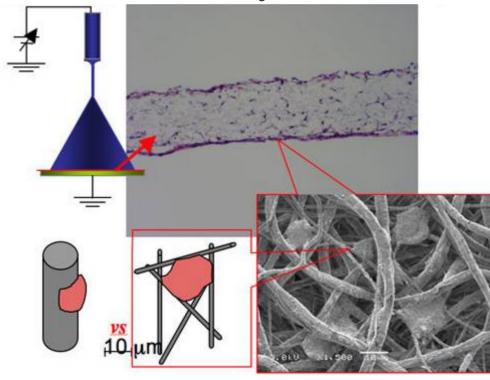
Improved Military Capabilities:

- Improved Armor Materials Lightweight materials for Army systems (Vehicles, weapons, etc.)
- Advanced Materials + Optical Properties
 - Laser Detection Sensors
 ** Army Collaboration

New Materials: Biomedical Electrospun Scaffolds


 Project 4.4 partners Prof. Gregory Rutledge's team with Dr. Sonya Shortkroff (BWH and CIMIT)

Exploring electrospun PCL scaffolds to grow new biological tissues


such as chondrocytes

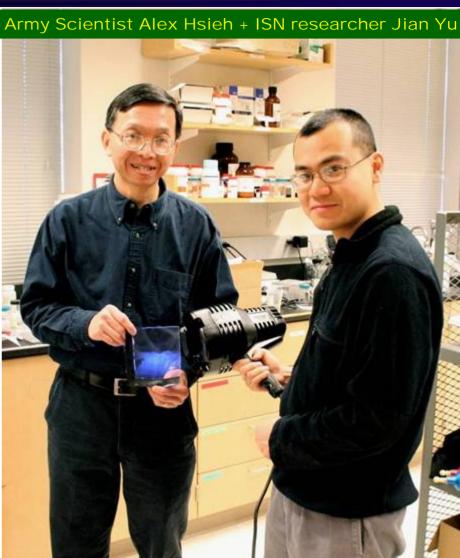
Electrospinning & Polymer Nanofibers
(L. Chen, J.L. Lowery, M. Ma, M. Wang,
KK.Gleason, RM.Hill /DCC, D.Kaplan, S. Shortkroff)

Superhydrophobicity

With R. Hill, DCC Visiting Scientist @ ISN, Rutledge group co-invented monodispersed color-shifting nanofibers Electrospun scaffolds exhibit unconventional cell/fiber interactions

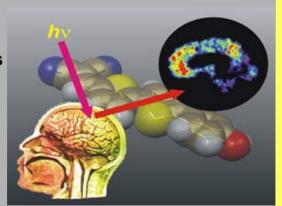
Collaboration between ISN researchers and Army Scientists: On-Site Army Research Lab (ARL-WMRD) Scientist

- Interesting material system developed at ISN
 - → Army Scientist Alex Hsieh creates transparent armor, understands Army context
 - → ISN researcher Jian Yu created a polymer system with embedded nanofibers
- •Initial goal leads to transition opportunities:
 - →Initially: reinforce eyewear
 - → Discovered interesting optical properties in UV
 - → Many potential applications (optical tagging):


lead users for feedback / testing....

Optically transparent in visible light

Pattern detectable under UV



ISN Tech Insertion: Army-funded 6.1 & 6.2 Science continues to improve explosives detection, leading to other capabilities

Extending chromophore use:

from finding explosives (FIDO) to finding Alzheimer's: Swager's group designed new dye (NIAD-4) to bind with brain plaques (TBI?)

Changing chem platform:

Swager / Bulovic / Fink

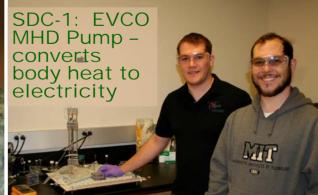
Hollow Photonic Band Gap (PBG) Fiber: Smaller Size & Better Signal

Nomadics FIDO == PLATFORM technology to insert new capabilities

Mar 2007 Rex.Blair@us.army.mil

Future Developments... Information-bearing Protective Materials?

- Possible structural materials:
 - + Next-gen Light-transmitting polymer (fiber optics inside polymer matrix)
 - **→**CNT-reinforced polymer matrix
 - → Embedded FiberWeb fiber sensors
- Possible protective materials:
 - + 3D Microtruss system
 - + Holographic Data Storage
 - DCC subsidiary Aprilis
- Micropumps + FiberWeb == lightweight laser warning systems, systems (OPTICAL SOUND) etc...
- Lens-less Imaging with FiberWeb
- Flexible EMI Shielding with iCVD
- New computer interfaces: logistics ops



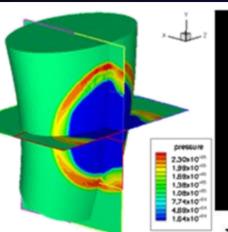
Microtrusses via2D & 3D photolithography

LitraCon
light-transmitting concrete
invented by Hungarian
architect Áron Losonczi –
Structural material embeds
optical fibers
<www.litracon.hu>

Army Expectations of Industrial Partners

Focus: Nanotechnologies to improve Soldier protection

- Industry Partners should support Soldiers as valued customer
 - Collaboration with Army/DoD S&T encouraged
- 6.2 Research should be scientifically compelling, AND should lead to commercial applications for nanotechnologies, leveraging 6.1 basic research
 - Two major paths:
 - <u>Commercialize</u> for open market; Army / other Gov't == Customers
 - With Army programs, *customize* for applications for the Soldier
 - Seek ways to <u>expedite</u> transition into products
 - Early products may be incremental improvements over current tech
 - → Soldiers = Lead Users, giving feedback on future directions



Army-funded University Affiliated Research Centers work with Army Scientists to address challenges

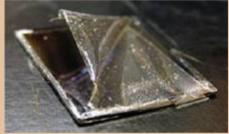
Energy Absorption:Modeling SoldierBlast Interactions
Radovitzky

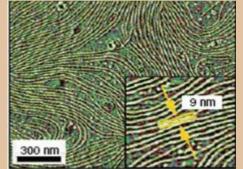
Simulation of lung injury due to blast overpressure (BOP)

Target human organ models

Army ARL-WMRD

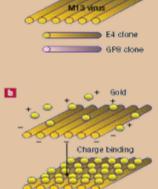
@ISN: Scientist
Alex Hsieh

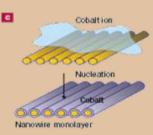



Transparent Protection: Shear Thickening Foam system, tested at ARL-WMRD

Portable Energy:

Virus-based Self-assembly of flexible Lithium batteries




Nature Materials, Vol 5, Mar 2006

Viral monotaver

SDC Transition: Ancile Warning System

Cadets 1st Class Brian Lebiednik and Greg Isham (front center and right) smile as Ancile system picks up another mortar round at the C-RAM exercise at Yuma Proving Grounds, AZ. Army officials said they hope to issue pagers to Soldiers in Iraq within the next nine months. *u.s. Army Photo*

Reward Innovation for Soldiers!

"Cadet project could save lives"

By MAJ Fernando J. Maymi, D/EE&CS

"Pointer View," May 27, 2005

http://www.usma.edu/PublicAffairs/PV/050527/project.htm

Four senior USMA cadets helping make troops safer.

EECS senior project for USMA Cadets 1st Class:
Jeffrey Hermanson, Jamie Dayton, Brian Lebiednik, Gregg Isham
Cadet team designed and built an Ancile pager
to warn Soldiers of incoming artillery/mortar strikes

Army tested at Yuma PG: "significant advance notice each time"

Project sponsor Paul Manz, technical director for ground combat command and control in Fort Monmouth, NJ, developed a plan to field pagers within 9 months.

Their senior project was a great way for them to help Soldiers: "wonderful that we were able to do something that helps keep our fellow Soldiers safe while they are working to keep us here at home safe"

→ Florida-based Mahdahcom licensed + is producing Ancile

Dealing with Success: Innovation Challenges

Secretary of the Army joined us for ARO @ ISN Workshop, 11 Apr 2000

- In innovation, tech availability ≠ adoption
 - Absorptive capacity issues
 - Practice for major change (FCS)
 - Clockspeed differences
 - Impedance mismatch
- Outsourcing risk == outsourcing process
 - Other peoples' processes reward differently
 - MIT TLO → patenting IP, \$\$\$
 - Small business marketing needs vs. OPSEC
- Entrepreneurs need to survive
 - First customer == favorite customer
 - Lead users: joint, varied missions
 - Champions crucial
 - Timelines are very different!!
 - RallyPoint: Apr 2004 vs. FFW Dec 2007
- Need to help manage risk
 - Army can help! Eg, Safety Certs, operational assessments
 - Need business growth: shared costs / revenues
- Innovation can help the Army & the Army can help innovators!
 - Need adaptive leaders who train in innovation
 - -Science must translate to technology
 - Technology must come to market
 - Customer purchases make a difference

Mar 2007

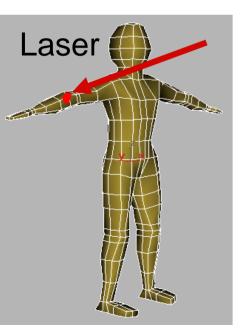
Support to Current Operations

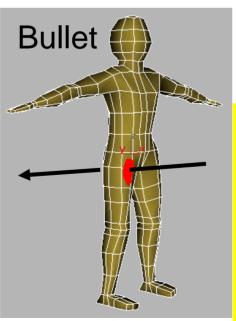
- Nomadics FIDO explosives detector has been in Iraq since Summer 2004: limited assessments by Soldiers and Marines, and screening with EOD Tech
 - → Detects TNT/TNT-based explosives, usable in several modes: handheld, on robot, underwater, down wells
 - → Air Force bought systems for cargo screening
 - → Army Rapid Equipping Force and Joint IED Task Force funding Iraq-based ATEC Warfighter Assessment of integrated FIDO on iRobot PackBot for vehicle inspection
- PEO Soldier procured ISN Soldier Design Competition award-winning Battery Power Scavenger designs from undergraduate teams for Soldier assessment

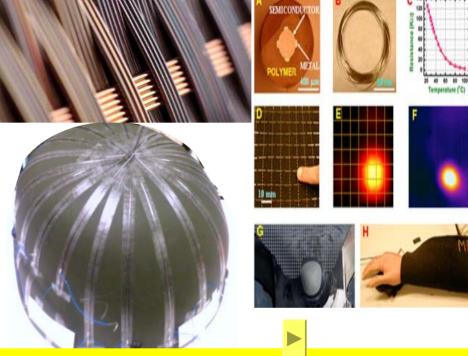
→ Designs from Supercharged (USMA) and Xitome (MIT) help Soldiers by scavenging power from used AA batteries for rechargeable batteries

USMA Team Supercharged: Cadets Nick Barry, Jeremy Spruce, Walter Velasquez

MIT: Xitome CEO Kailas Narendran shows PowerPlus


ISN "Fiber Web" linear sensors (Profs. Fink & Joannopoulos)


Same Material: FIBER WEB: Senses light from lasing (both ops + embedded training), Temperature for well-being,


Lasers for intra-squad comms (when RF not available or desired)

Full Body MILES++
For Realistic Training

Full Body Thermal Sensing

-- Rapid helmet prototype for PM SOF Warrior CID user demo 27Nov2006

-- Based on 20Dec2006 VTC, PM Live Training Systems will assess for potential use in Training devices e.g. MILES, E-Targets

Challenge: Tech vs. OPSEC

- Why ISN good idea: ISN acts as hub
 - Multi-dept professors brought together
 - Chem Eng (Gleason) + Chem (Klibanov)
 - Big discoveries at the crossing of academic boundaries
 - Army benefits from interaction of smart people
 - -They benefit by meeting / knowing customer
- My role: Military liaison people get immediate feedback from me as combat commander on technology uses
- Some ISN projects
 - FIDO
 - Cima Microchips vs. hemorrhagic shock --??
- My special project
 - FiberWeb ICOM-H: comms over light
- SDC rapid innovation program: How are we helping the Soldier today

Mar 2007 Rex.Blair@us.army.mil

Breakthroughs, the Product of Innovators By Burt Rutan

Breakthroughs: Why

- Technical accomplishment
 - Defines our species separates us from other animals
 - Satisfies desire for continuous improvement
 - Provides for 'well being'
- Without breakthroughs
 - Boredom and mediocrity
 - Low expectation of future
 - Degradation of national security

Breakthroughs: When

- When do breakthroughs occur?
 - During or shortly after:
 - Crisis, chaos, "bad" times
 - -Not:
 - During tranquil, stable, "good" times
 - When highest priority is equal status of populous
- We are creative when scared

Breakthroughs: How

- Breakthroughs cannot be specified by massive funding
 - Example: Low cost space access was the
 goal of the Space Shuttle Program
- Breakthroughs occur due to the working environment
 - Kelly Johnson 'Skunk Works'

Breakthrough Observations

R & D experience has inverse relationships

- Value of product....Self-perceived sophistication of customer
- Content of new technologies....Program timeline
- Product's worth....Risk averse role of managers

The management of innovators

Manager's only tasks: Set goal and get funding

- Set goal high (50% should say impossible)
- Reward achievement of goal (power of a prize)
- Let the innovator decide what risks to take
- Leave them alone and keep others out
- Applaud courage and expect multiple failures
- Allow fun

Focus for the management of innovators

"If you want to build a ship, don't drum up people to collect wood and don't assign them tasks and work, but rather teach them to long for the endless immensity of the sea."

-Antoine de Saint-Exupery

Exposure During Childhood Leads to Adult Technical Innovation

• Inspiration begins early – Kids ages 3 to 14

Our Responsibility Now - Create Progress to Inspire our Kids

- Our Technology leaders had their inspiration in exciting times
- Periods of extreme technical progress:
 I will discuss three.
 - Aviation's Renaissance, 1908 to 1912
 - My inspiration, 1946 to 1957, post WWII
 - Gagarin to Skylab, 1961 to 1973

Aviation's Renaissance 1908 to 1912

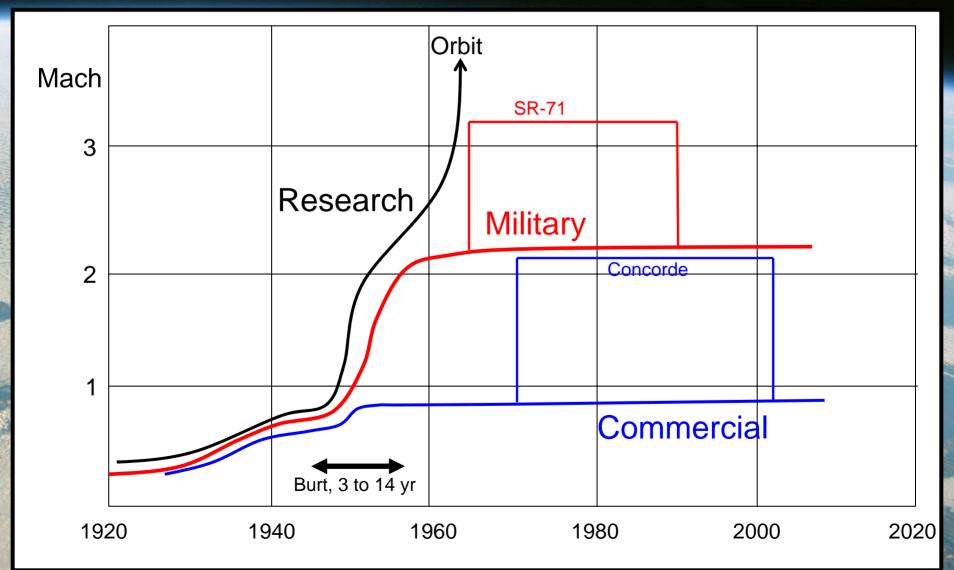
- Early 1908, < 12 pilots
 - Then "I can do it"
- By 1912
 - Hundreds of aircraft types in 39 countries
 - Aircraft invented by 'Natural Selection'
 - Airshows with 400,000 attendance

Kids Were Inspired by Aviation's Renaissance

Which Kids Were Inspired by Aviation's Renaissance?

- Every one of those that inspired me.
 - Wernher von Braun
 - Kelly Johnson
 - Charles Lindbergh
 - Jack Northrop
 - Ed Heinemann
 - Howard Hughes
 - Sergei Korolev
 - Alexander Lippisch
 - Bill Lear

Aerospace Activity 1946 to 1957 During my Childhood (age 3 to 14)



The Jet Age starts. The Missile Age starts.

Childhood Activities Were Driven by Aviation Progress

A Jump in Performance Inspired me during childhood

My Post-College Career Choice: Aviation (unusual for space-crazed 1965)

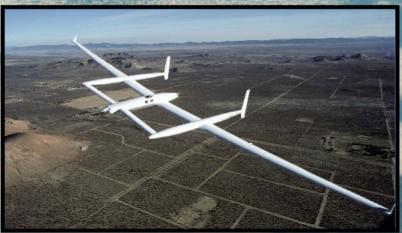
- Airplanes, not the moon
 - Realist?
 - Burt the conservative?
- General Aviation was the passion, but Air Force Flight Test, was the Compromise.

Air Force Flight Test 1965 to 1972 The "whole-package" experience Best training for an aircraft designer

Military Flight Test Not Fulfilling

- Great experience, but not creative
- Light aircraft target rich for innovation
- Light aircraft were the 'fun hobby'
- The dream of a job as fun as the hobby

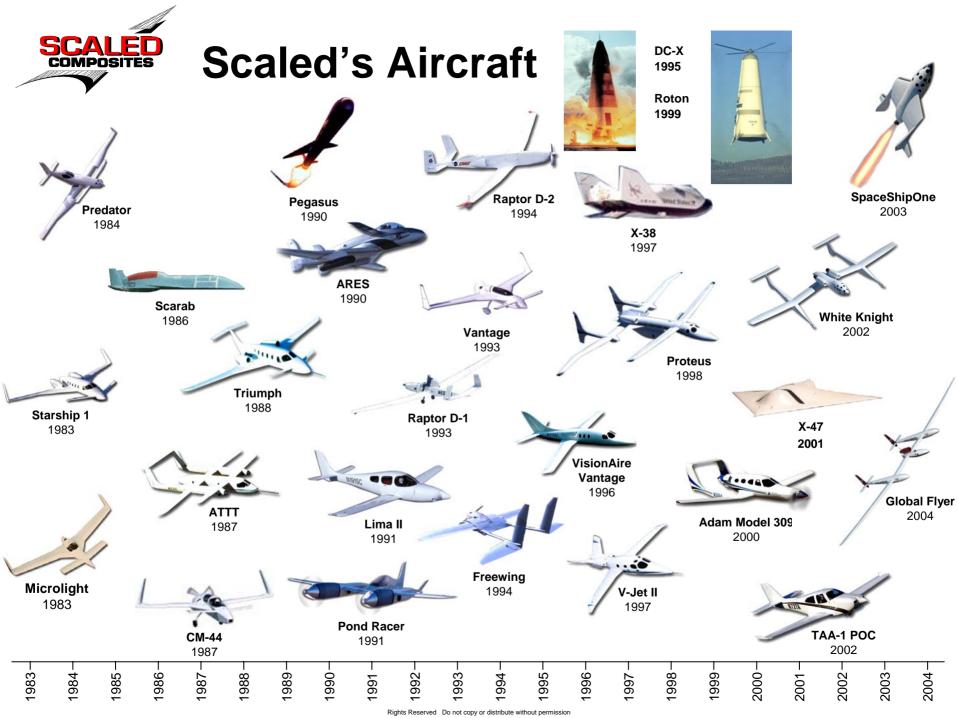
A Big Jump 'Down' 1972 Rutan Aircraft Factory The entrepreneur can control his destiny



The Projects of RAF 1972 to 1985

The Public Interface The Thrill of the Milestone

Rights Reserved. Do not conv or distribute without permission


Scaled Composites Company 1982 - Present

- Composites Structural Technology
- Aggressive projects, big customers
- World-Class Staff shop and engineering
 - More folk to have fun

Why The Perfect Accident Record?

The U.S. Manned Space Renaissance 1961 to 1973

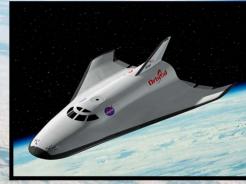
- Progress accelerated by Sputnik/Gagarin 'losses' – The need to regain National prestige
- A wild ride to recover prestige
 - Mercury, Gemini, Apollo lunar, Skylab and planetary exploration
- Enormous courage applied to huge risks
 - Five launch systems in seven years
 - Apollo 8/Saturn 5 risk
 - Lunar-orbit-rendezvous decision

American Manned Launch Systems

Redstone Atlas Titan Saturn Shuttle

Each was abandoned when more expensive one became available - not matured for affordability

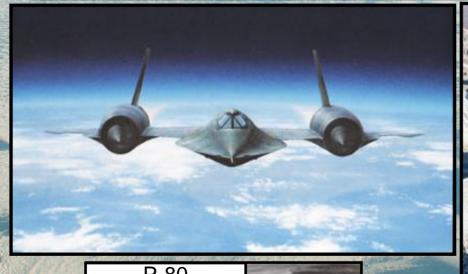

15


114

Flights: 2

The Collapse that Followed 1973 to Present

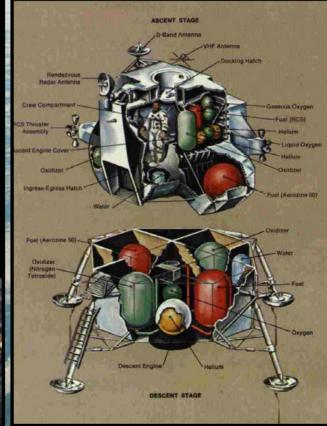
- Abandoned genuine search for safe, efficient orbital manned capability.
- Abandoned lunar capability
- Risk-averse attitude: study it, do not try to fly.
- Lacked the courage to fly new research programs



The Most Impressive Aircraft? Lockheed SR-71

Designed in 1959, only 14 years after first operational jet. First flown in 1963.

Abandoned in 1998, retreated to 1956 U-2.

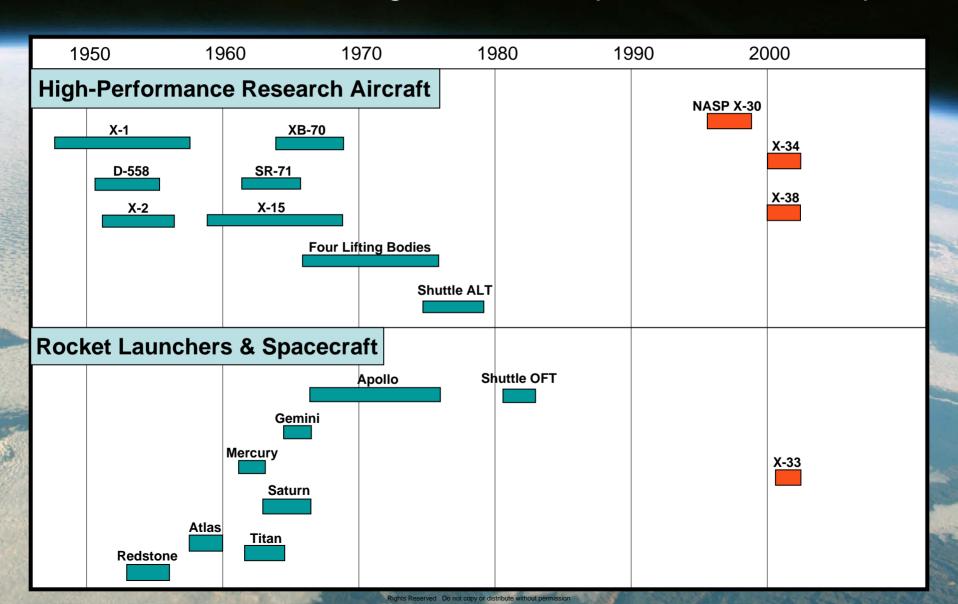


The Most Impressive Spaceship?

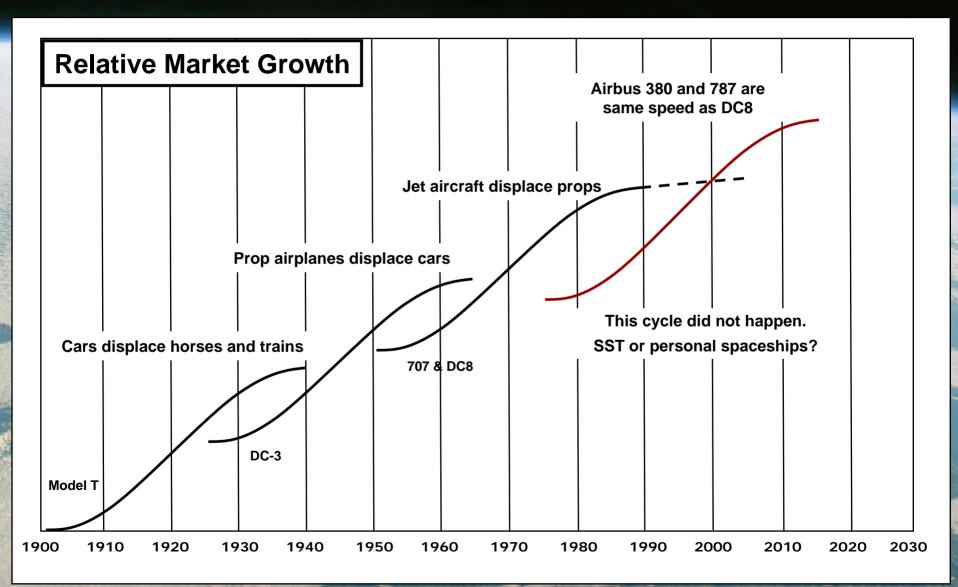
Grumman Lunar Module
Designed in 1964, three years after Gagarin
First flight 1968
Abandoned capability in 1972

Rights Reserved Do not copy or distribute without permission

What is wrong with this picture? 1925 1965 2005



F-22 Raptor & F-35 JSF The only new USAF fighters for the next 40 years?


- Another 40 years with 1960's performance?
- Requirements based on perceived need, not a desire to find performance breakthroughs.
 - Air superiority in < 2 days, last two decades.
- Requirements direct Development Programs, not Research.
 - Industry employs a new generation of aerospace engineers who think development is research.
 - Risk averse requirements breeds risk averse technical progress.

Historical Perspective

Manned Research Programs That Expanded the Envelope

Higher Speed Travel – Forty Year Cycles We are Overdue - Recent Cycle is Missing

Orion/Ares, NASA's road ahead

- Retreat to Apollo/Shuttle-era hardware for manned orbital and lunar operations
- No opportunity to discover breakthroughs
- Another 13 years without progress for Personal Spaceflight
- Lack of challenge for another full generation of spacecraft designers.

Our Sub-Orbital Space Program The Goal is Fun, To Enjoy This View

To stimulate a Private Spaceflight industry, so others can enjoy this view

Space, for us – Why Now?

- SpaceShipOne was a personal goal, not a customer request
- Inspiration from visionaries' courage
 - Required my exposure as a child, not a view of current aerospace practice
- The 'New Space' investors/developers were, as children inspired by Sputnik to Apollo
 - Allen, Musk, Bezos, Branson, Bigelow,
 Page/Brin & Carmack

Our Research Test Pilots

Launch Aircraft - White Knight

- Identical systems components to Spaceship.
- Provides pilot training for boost, entry & landing.

SpaceShipOne

Air-launched Feathered entry Runway landing

The Re-entry Feather Immune to accidents caused by entry flight controls

Forces Ship to a Stable High Alpha Condition Active controls not needed

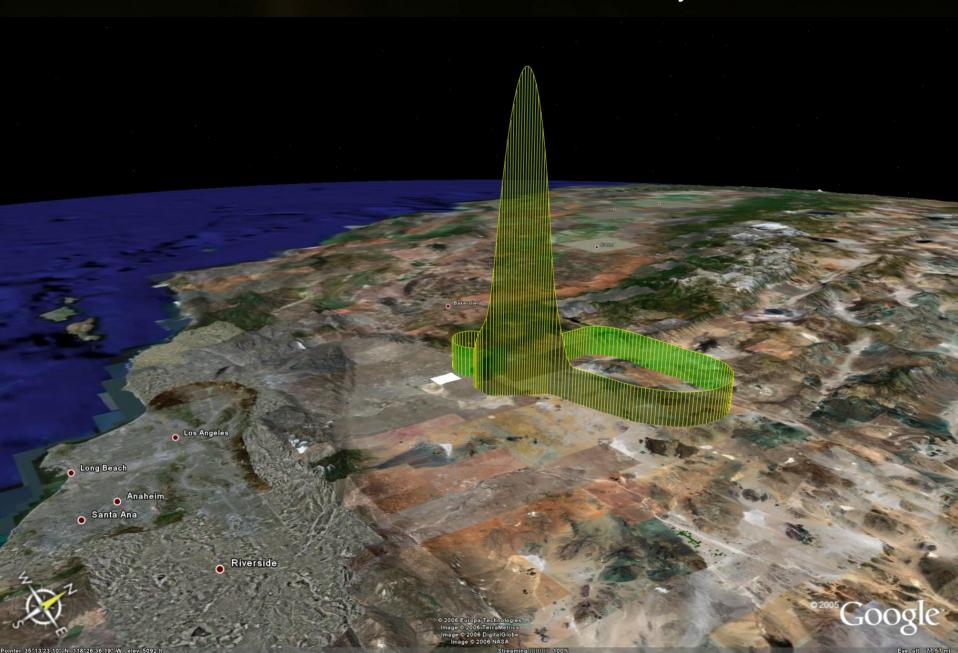
- High Drag = Lower loads & Lower Heat
- Result: 'Care-Free' atmospheric entry

An Aggressive Flight Test Program

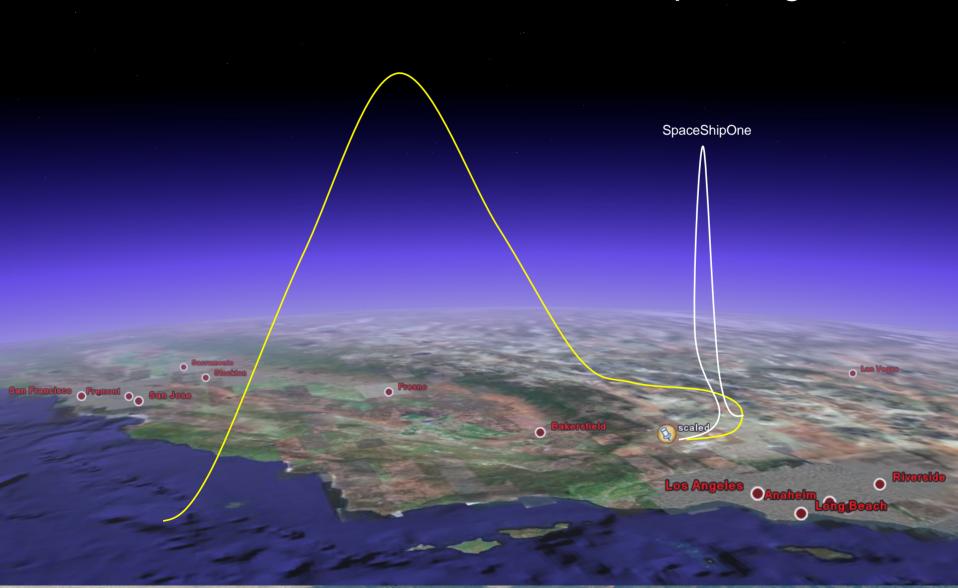
- White Knight, Pre-Spaceship
 - Performance, Stability & Space Systems Development
 - 56 flights, 10 Months
- Rocket Hot-Fire Ground Tests
 - R & D nine months, eleven firings
 - Flight qualification Three Firings

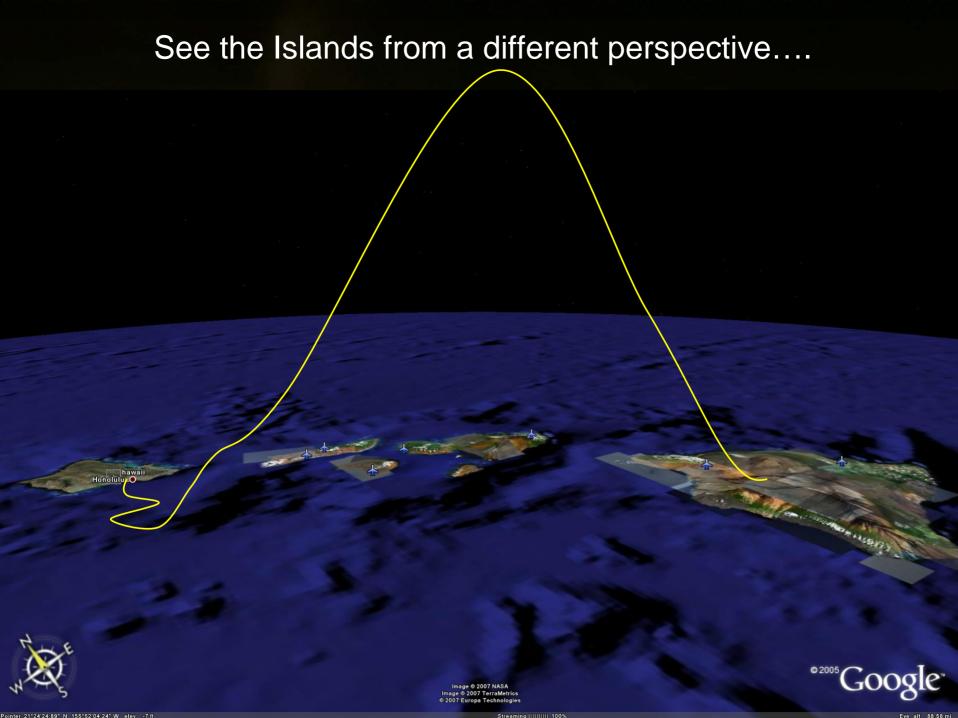
- SpaceShipOne Flight Tests
 - Two captive carry (one manned)
 - Glide tests 7 glides, 4 months
 - Rocket Powered Envelope
 Expansion 4 flights, last one
 >100km
 - X-Prize 2 full-performance flights in 5 days

Space flight really is too dangerous Airline experience as a model


Risk statistics, fatal risk per flight

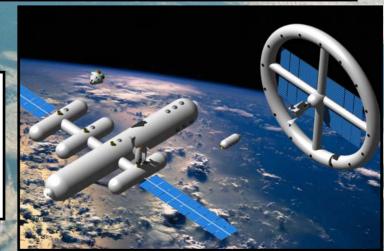
- All manned space flight = 1 per 66 flights
- First airliners (1927 & 1928) = 1 per 5500.
 Same aircraft, but add some maturity (1933 to 1935) = 1 per 31,000
- Modern airlines = 1 per several million
- Logical Public Spaceflight goal:
 - Better than the first airliners
 - < 1% of the historic government space risk</p>
 - Achievable only for sub-orbital

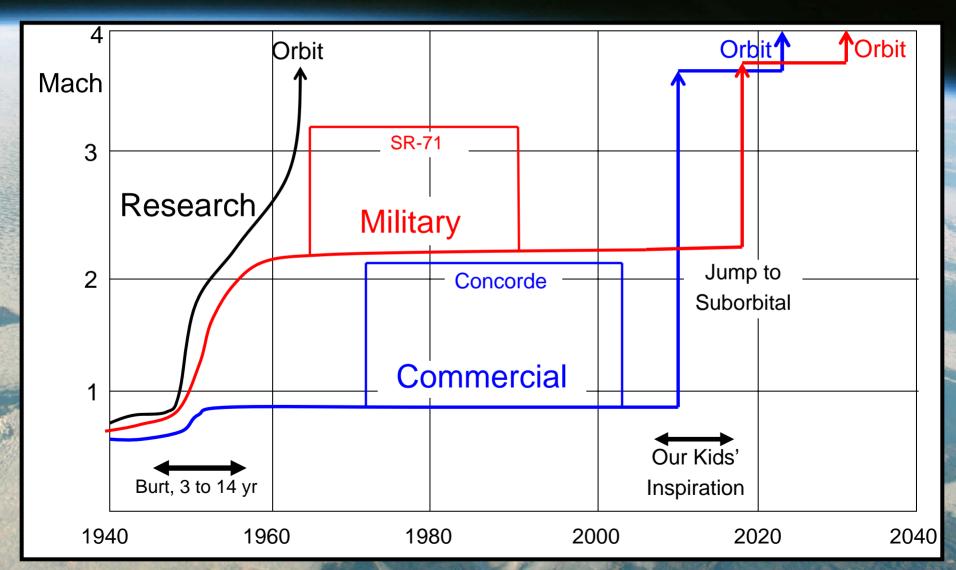

Is a New Space Renaissance Possible? What Is Needed?


- Environment that existed for aircraft in 1909
 - Entrepreneurs in competition for market share
 - Belief that "I can do that"
- Courage to try risky concepts
 - Breakthroughs needed for safety
 - Robust solutions needed
- Research justified by exploration and fun
 - Not just politics and 'science'

Your View from 130 Km altitude – Mojave Desert

Trajectories Commercial SubOrbital Private Spaceflight




The Next Steps for Private Spaceflight

- First industry sub-orbital flights
 - Experience optimized
 - Large cabins, large windows and body weightless float.
- First industry high-volume
 - Competing spacelines, flights priced to fly 100,000+
 people (first 12 years of operations)

Success will accelerate solutions for safe, affordable flights to orbital resort hotels

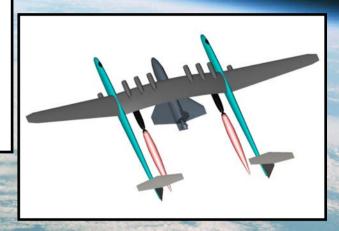
A Prediction Commercial Jumps Ahead of Military

What Good is a Private Sub-orbital Space Industry? Just for Fun?

- The home computer Internet example
 - 'Fun' really is defendable
- Inspiration for kids
 - Today's technology products are enablers, not goals
 - Kids need to be inspired by a far-out dream/goal

Why we stopped flying SpaceShipOne

Your request to a non-expert.... Rutan's Comments on S & T Focus for Defense?

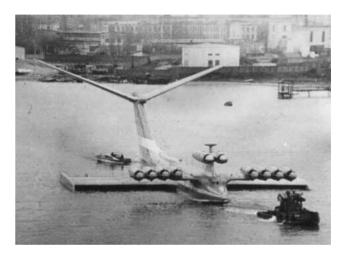

- U. S. competitive position in Science and Engineering.
- True responsive space presence.
- Heavy transport.
- The "all UAV Air Force".
- Human contribution to global warming.
- Humanity's future in a connected world.


U. S. competitive position in Science and Engineering

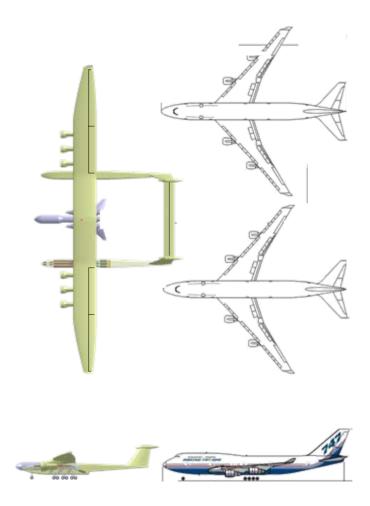
- The education statistics are bleak
 - Science vs. lawyers/media/politicians/actors*
 - * And other criminals
- The real reason we are boring our youth
 - Development vs. research
- The solution take real risks
 - Exploration
 - Adventure
 - Breakthroughs
- Strive to be great, not to be 'equal'

True Responsive Space Access

- Air launch
- Routine, high-volume operations
- Sea recovery



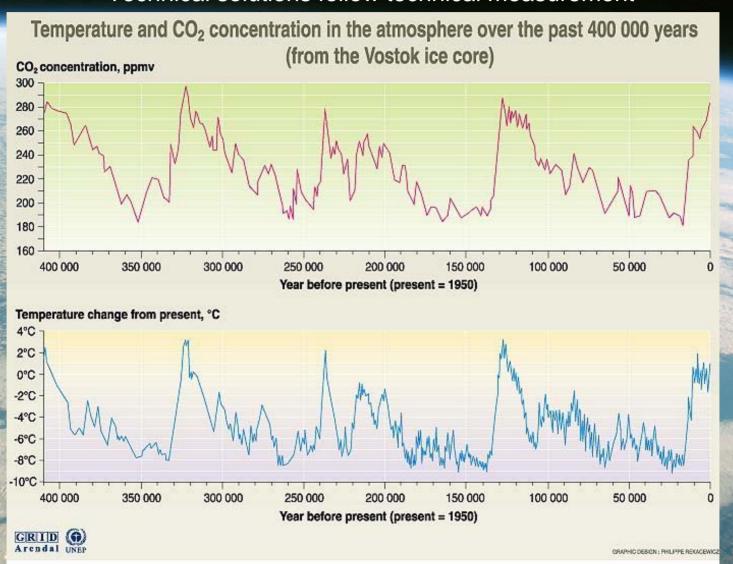
Russian Ekranoplans (wing-ships)



Heavy lift via use of a large space launcher Payloads up to 450klb

UAV vs. Manned Aircraft Systems

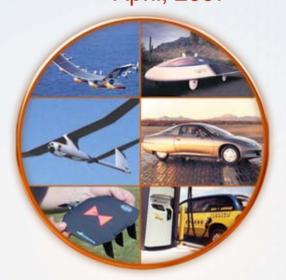
- The fighter pilot's proficiency
 - Our leadership maintained?
 - Proliferation
- The fighter pilot's courage
 - Eliminate Capt Scott O'Grady?
- Cost savings?
 - Development and Ops



Are we destroying the planet?

Consensus vs. Science

Technical solutions follow technical measurement



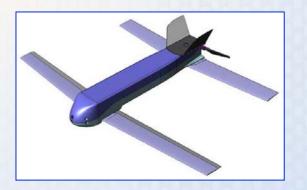
Humanity's future in a connected world

- Internet....the tip of a huge iceberg
 - Our need to travel, if a virtual mode is available
 - Countries defined by belief, not by geography
- Humanity we are just getting started

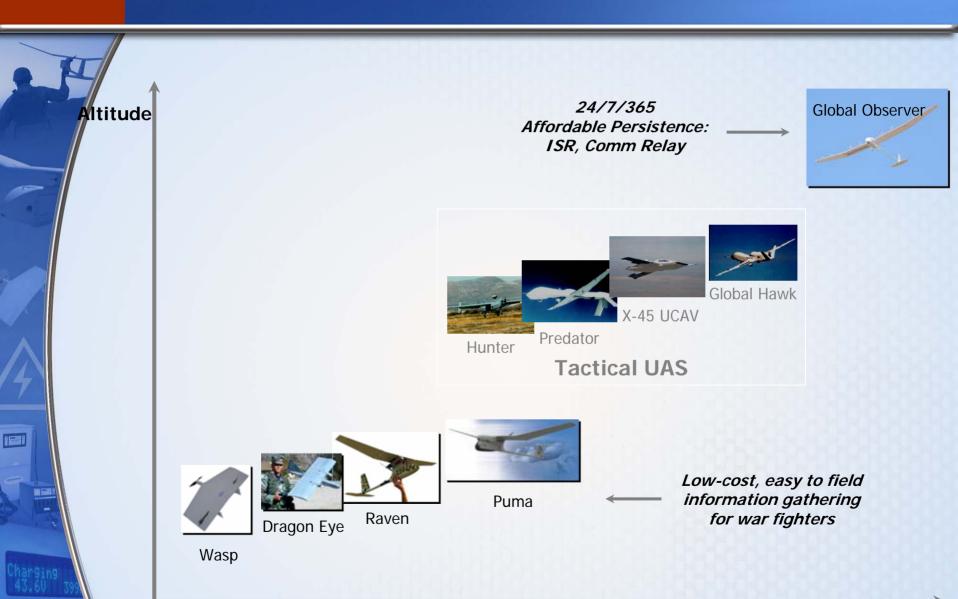

Pacific Theater Operational Science and Technology Conference Future Solutions - ISR April, 2007

John Grabowsky
Executive VP, GM UAS
AeroVironment, Inc.

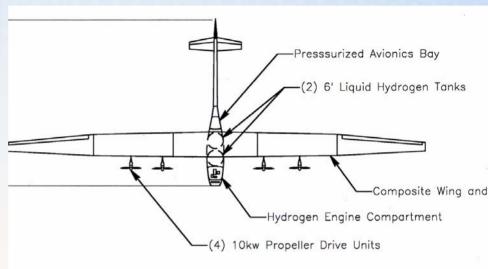
Three New Platforms & Supporting Technologies

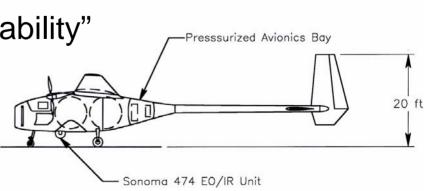

Global Observer

- Squad-Level ISR
 - Wasp

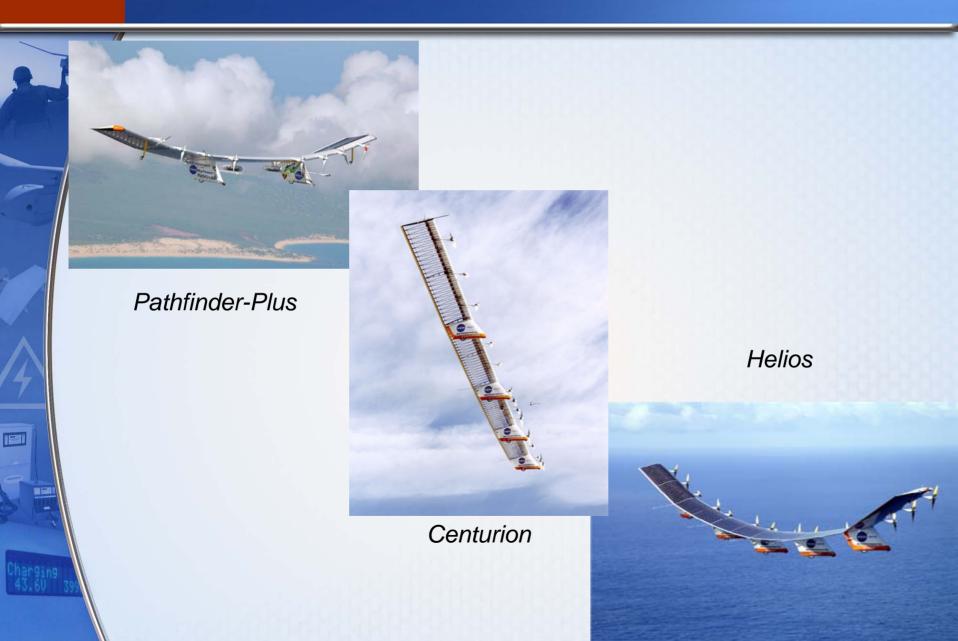


- ISR, with teeth
 - Switchblade

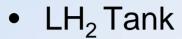

AV's Operating Space

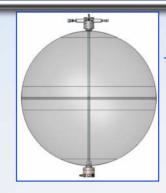

Value of Affordable Stratospheric Persistence

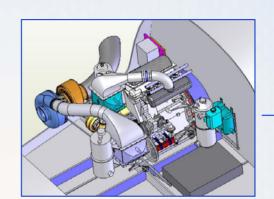
- Quick Reaction
 - In/out theater Bandwidth
 - Comm Relay
 - ISR
 - Psy Ops
 - Disaster Recovery


Compelling O&M and LCC Benefits

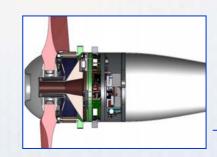
Ability to "Reconstitute Capability"


20 years of stratospheric flight experience




Underlying Technologies

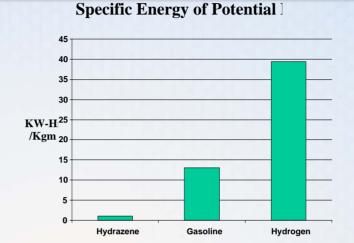
GO-0 Flights

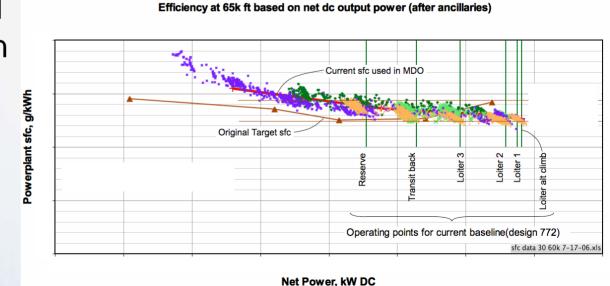


LH₂ Powerplant

Efficient Electric Generator

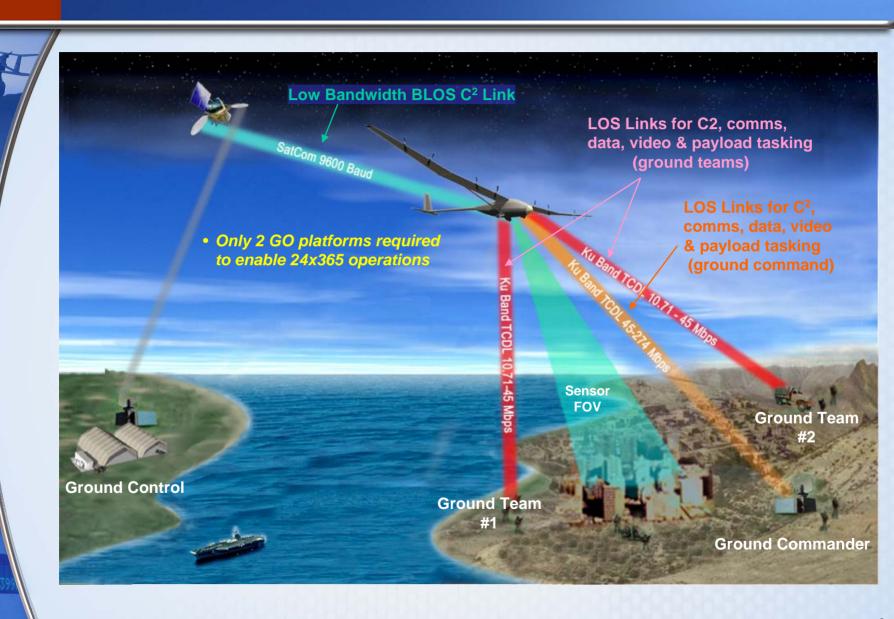
Efficient Propulsion





Energy Densities and Efficiency

Why Hydrogen?



 Specific Fuel Consumption

Military ISR and Relay Mission

Global Reach

Continuous (24/7/365) persistence over any point in footprint with 2 aircraft

Squad-level ISR: Wasp

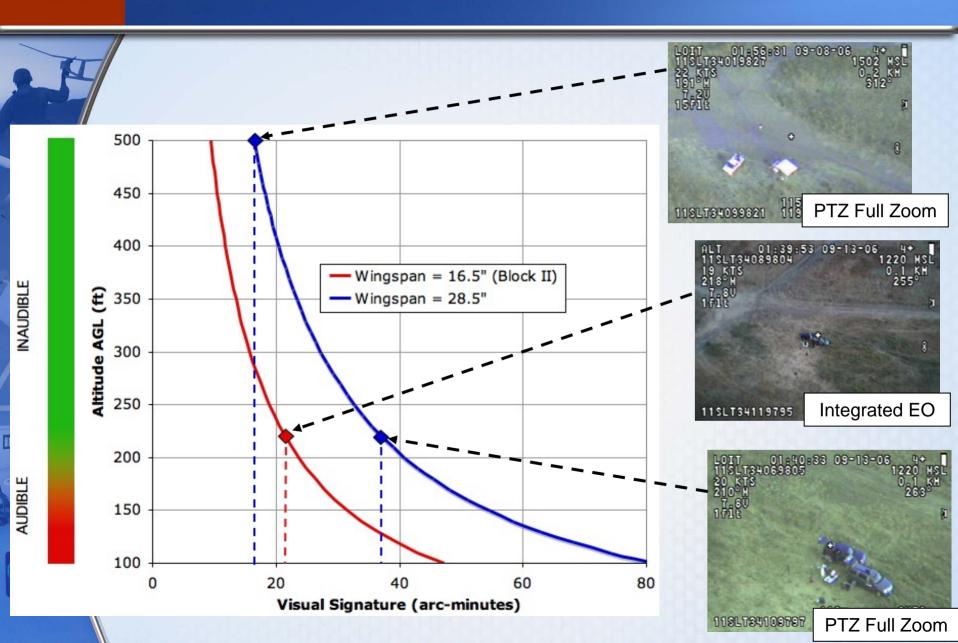
Requirements for Squad ISR

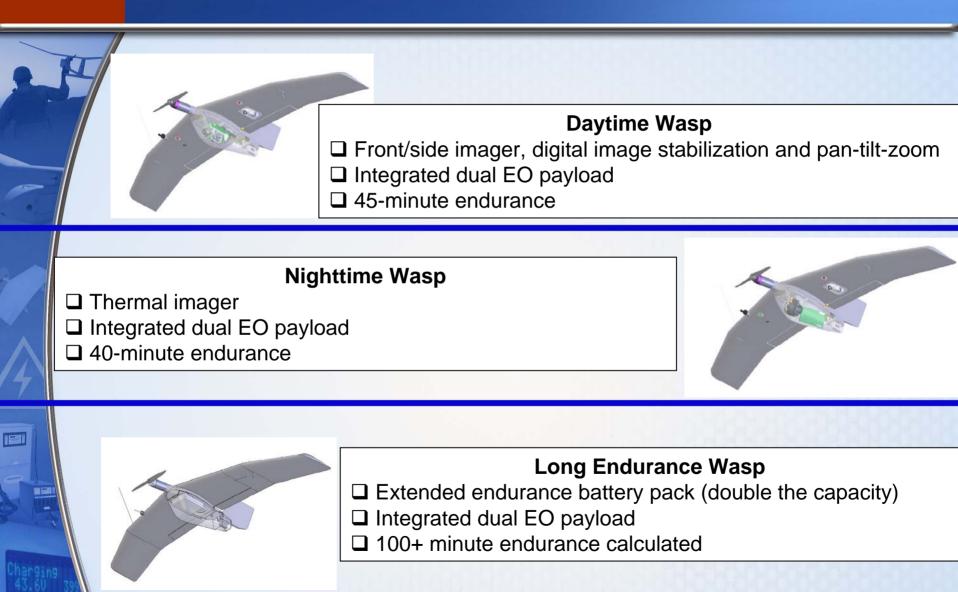
- Small, Lightweight, System Rucksack-portable
- Day and Night sensors
- 30+-minute endurance
- Rugged, Reliable
- Low cost
- Low-Observables

Supporting Technologies: Payloads

- Rugged
- Quiet
- Efficient
- Inexpensive

- LWIR
- EO Payload
 - Digitally stabilized
 - Steerable

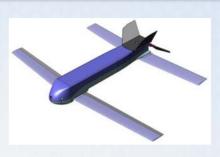




Visual/Acoustic Signatures and Resolution



Wasp Block III Configurations


Man-portable ISR, with teeth: Switchblade

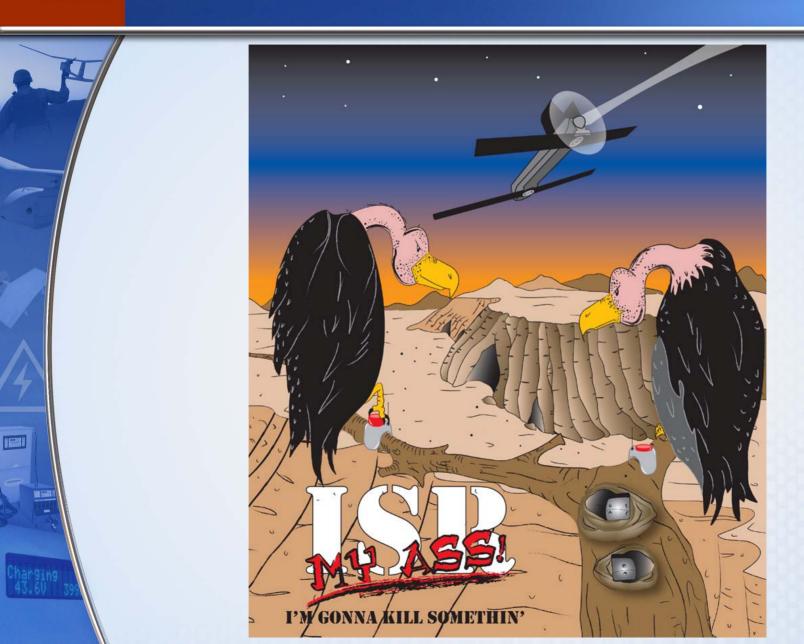
Squad-level Lethal UAV Requirements

- Man-Portable SYSTEM
 - Air Vehicle
 - Launcher
 - GCU
- Low Optical/Acoustic Signatures
- **High Speed**
- **Autonomous Terminal Guidance**
 - Small CEP
- Warhead
 - Lightweight
 - Lethal
 - Minimal Co-lateral
- Low Cost per round

Air Vehicle

Supporting Technologies

- Lightweight Launcher
 - Simple, reliable launch mechanism
 - Low acoustic signature
- Miniaturized Avionics
 - G-hardened
 - GPS, RF Data Link, IMU, Air Data
- Lightweight Propulsion
 - Quiet efficient motor, propeller, Batteries
- Lightweight Lethal Payload
- Autonomous Terminal Guidance
 - Operator Initiated
 - Low CEP Video Tracker



Small CEP Tracker

The End

Pacific Operational Science and Technology Conference Panel Discussion Undersea Warfare

Mr. Roger Bagbey
Senior Vice President, Engineering Technology Center
Alion Science and Technology Corporation

4 April 2007

USW Panel Agenda

NDIA Undersea Warfare Division

- Basis for Industry Meeting PACOM's Needs
 - Knowing What's Needed for USW
 - Opportunity for Return on Investment
- An Example
- Summary

- The USW Division defines Undersea Warfare as: Anti-Submarine Warfare (ASW), Mine Warfare (MIW), Surveillance, and Special Operations
- Organized into five focus areas:
 - Sensor Systems, Mine Warfare (MIW) Systems, Undersea Vehicles, Aviation, and C4I and Combat Systems
- Sponsors Two Major Technical Conferences
 - Joint Undersea Warfare Technology Spring Conference
 - Joint Undersea Warfare Technology Winter Conference
- Currently Conducting Two Technical Studies for USN Sponsors
 - ASW Common Tactical Picture Study, 8 June 2006- in process
 - Distributed Netted Sensor Study, 6 January 2006 in process

Overview of USW Division

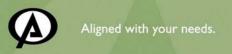
- USW Division Identified Key Technology Areas
 - Deployment
 - Sensing
 - Communications
 - Distributed Command and Control
- 2007 Spring Joint Undersea Warfare Technology
 Conference About 400 attendees
 - Senior Navy Leadership Provided Classified USW Status and Concerns
 - 126 Program and Systems Briefs Presented In A Classified Forum

Basis for Industry Meeting PACOM's Needs

- Knowing What's Needed
 - Threat
 - Operational Constructs
 - Constraints
 - Challenges
- Opportunity for Return on Investment
 - Availability of funding
 - Protection of Intellectual property
 - Timeliness of Return

Knowing What's Needed for USW Beyond

- Science & Technology 2010
 - DARPA
 - ONR (BAA, SBIR, STTR, FNC, etc.)
 - NDIA (Bi-Annual Conferences, Special Studies)
 - NRAC, NSB (Special Studies)
 - Etc.
- System Development
 - PEOs/SYSCOMS
 - Performance (System) Specific RFP
 - Formal Acquisition Process
 - Directed BAA
 - e.g. Theater ASW, Periscope Detection Radar
- Navy Master Plans (ASW, MIW, UUV, ...)



Opportunity for Return on Investment

- Availability of Funding
 - General Decline Known & Accepted
 - PBD 753 Augments ASW R&D
- Protection of Intellectual property-Versus:
 - Peer Reviews
 - Open Sourcing
- Timeliness of Return on Investment
 - Rapid Development Concept

versus

Business as Usual

An Example from Alion Experience: Continuous Active Sonar (also Receive While Transmit (RWT))

What is it?

- High Dynamic Range
 Electronics permits receiver
 cancellation of directly
 transmitted signal without
 disturbing echo reception
- Radar heterodyning technique converts continuous echo to narrowband signal with frequency proportional to range

How does it work?

- More Energy on Target With Less Power (Smaller, Low Impact, Transmitters)
- Increased Time x Bandwidth Product (Lower Detection Thresholds)
- Narrowed Track Gates (Better Range Rate Resolution; Reduced Clutter)
- Enables Many Implementation Concepts (Ship Based; Off-board, &

Bottom Line: Longer Detection Ranges/Reduced Latency/Lower Cost

USW Discussion Summary

- NDIA has a functional and focused structure and its members remain anxious to support PACOM's USW Needs
- Funding Limitations are a fact of life that Industry accepts
- Industry's ability to innovate is conditioned by DoD policies, e.g. Security, Peer Review, Open Sourcing, and Acquisition Timeliness

Industry can meet DoD S&T needs and welcomes more direct warfighter interaction

Maritime Domain Awareness – Future Industry Solutions... FY10 and Beyond

Tom Williams

4 April 2007

The Challenge

Conventional Warfare

Global War on Terror

"We Need a NORAD for Maritime Forces"

Admiral Vern Clark, Former CNO
(August 15, 2002)

The Problem

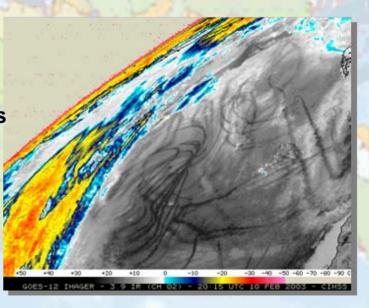
- Over 150,000 commercial ships
- 80,000 involved in global trade
- 40,000 ships within 1,000 mi of US coastline

BOE

Enabling Technology Investment Areas

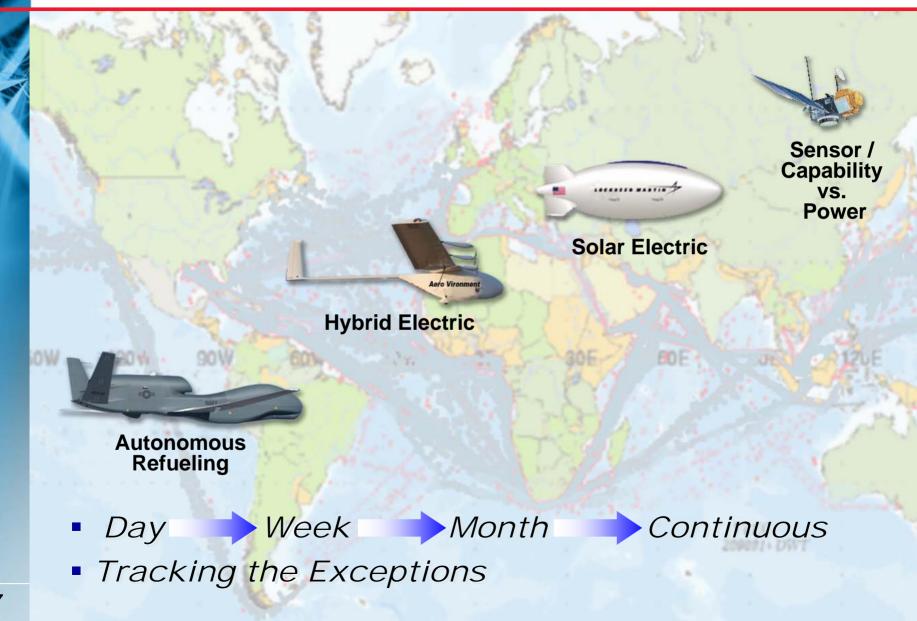
- Ability To <u>Uniquely</u> "Fingerprint" Thousands of Large and Small Hull Commercial Ships
 - Fusion and Reasoning Tools
 - Persistent Surveillance
 - Cooperative Communications / Information Sharing

"Finger Printing"



- Radar/Radar Emissions
- Acoustics
- **Hyperspectral**
- **Other Unintended Emissions**

- **Less Uncertainty**
- **More Targets**
- **Greater Ranges**
- **Bearings and Tracks**


Fusion and Reasoning Tools/Algorithms

- Behavior Analysis / Pattern Recognition
- Netted and Shared Information

- "Clutter Rejection"... Weeding Out the Good Guys
- Knowing Where Your Ship Has Been Lately?

Persistent Surveillance

Cooperative Communications / Information Sharing

Enabling Technology Investment Areas

- Ability To <u>Uniquely</u> "Fingerprint" Thousands of Large and Small Hull Commercial Ships
 - Fusion and Reasoning Tools
 - Persistent Surveillance
 - Cooperative Communications / Information Sharing

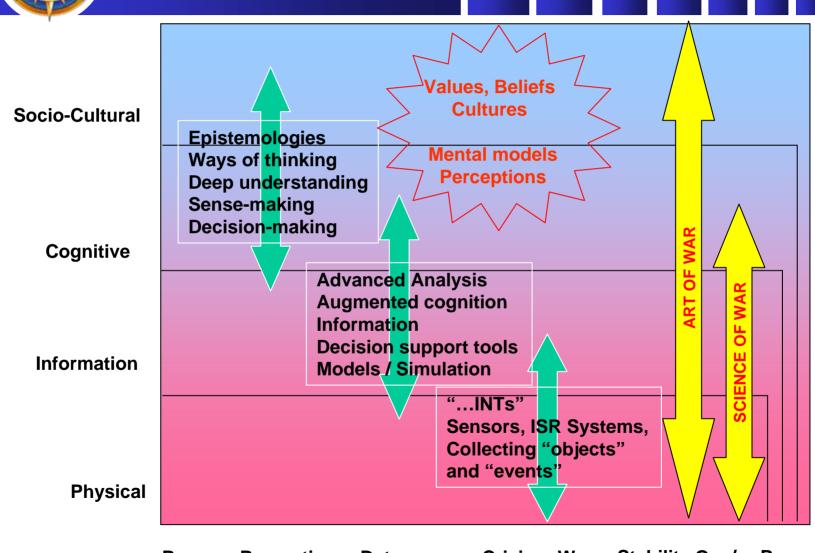
Intelligence Perspective U.S. Pacific Command

3 Apr 2007

RADM Andy Singer USPACOM J2 & Director, Joint Intelligence Operations Center

Integrate Intel, Ops & Plans

- Set conditions for success ... 2/3/5 unified action
 - Includes operational perspective and 'So What' factor
 - Links ops to future planning
- 'Always On' dynamic Intel interaction
 - Increases 2/3/5 situational awareness and info sharing 24/7
 - Shapes ops and plans ... influences decisions
- New Core Value
 - Know theory of victory challenge with Intel
 - Clarity of data and Intel not consensus of opinion
 - Quality of analysis
 - Blue Red team


Intel Mythology

- 1. Outside world cannot contribute to understanding Intel
- 2. It is about stealing secrets
 - Higher classification ≠ better
- 3. Is a service + decision maker's master
- 4. All we need is horizontal integration
 - Vertical first
- 5. Intel Operators vs. mechanics

So what do we do about it?

"Art and Science" / Domains of Warfare

Peace Prevention Deterrence Crisis War Stability Ops/ Peace
UNCLAS

Transition

DHS Science & Technology: Alignment for Success

Pacific Operational Science & **Technology Conference**

Honolulu, Hawaii · April 3, 2007

Jay M. Cohen **Under Secretary** Science and Technology Directorate

Surprise is nothing new to Hawaii!

DHS S&T Investment Portfolio

Balance of Risk, Cost, Impact, and Time to Delivery

Product Transition (0-3 yrs)

- Focused on delivering near-term products/enhancements to acquisition
- Customer IPT controlled
- Cost, schedule, capability metrics

Basic Research (>8 yrs)

- Enables future paradigm changes
- University fundamental research
- Gov't lab discovery and invention

Innovative Capabilities (1-5 yrs)

- High-risk/High payoff
- "Game changer/Leap ahead"
- Prototype, Test and Deploy
- HSARPA

Other (0-8+ yrs)

- Test & Evaluation and Standards
- Laboratory Operations & Construction
- Required by Administration (HSPDs)
- Congressional direction/law

Customer Focused, Output Oriented

S&T Organization

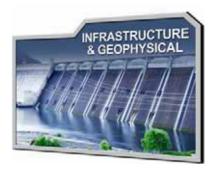
DHS U/S S&T **Director of Innovation** Director of Research **Director of Transition** Starnes Walker **Bob Hooks Roger McGinnis** Deputy Deputy Deputy **Rolf Dietrich** Rich Kikla **Dave Masters Innovation** Command, Control Border/Maritime Human Infrastructure/ **Explosives** Chem/Bio & Interoperability Capt Dave Newton **Factors** Geophysical Jim Tuttle John Vitko **USCG** (Acting) **Sharla Rausch** Chris Doyle (Acting) **Dave Boyd** Research Research Research Research Research Research Research Chem/Bio: Keith Ward Intel: John Hoyt Jeannie Lin Michelle Keeney (Acting) Mary E. Hynes George Zarur Threat Char/Attribution: Futures: Joe Kielman Sandy Landsberg Jnt Agro Def: Tam Garland Transition Transition Transition Transition Transition Transition **Herm Rediess** Joe Kielman (Acting) Jeff Stielfel **Trent DePersia David Newton** Lawrence Ash

Transition Portfolio

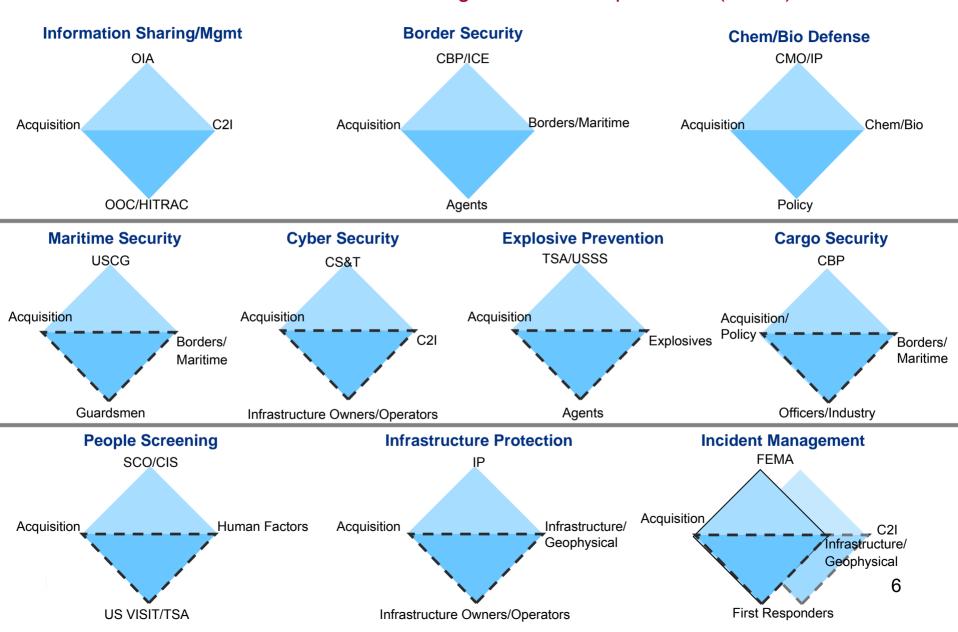
Enabling Capabilities, Supporting Mission Critical Needs of DHS

Integrated Product Teams (IPTs)

 11 Capstone IPTs form the centerpiece of S&T's customerdriven approach to product transition



 Engage DHS customers, acquisition partners, S&T technical division heads, and end users in product research, development, transition and acquisition activities



 Identify our customers' needs and enable and transition near-term capabilities for addressing them

DHS Requirements/Capability Capstone IPTs

DHS S&T Product - "Enabling Homeland Capabilities" (EHCs)

Basic Research Portfolio

Discovery and Invention to Enable Future Capabilities



- Brings the capabilities, talent and resources of the Homeland Security Centers of Excellence, DOE National Laboratories and DHS Labs to bear to address the long-term R&D needs for DHS in sciences of enduring relevance
- This type of focused, protracted research investment has potential to lead to paradigm shifts in the nation's homeland security capabilities

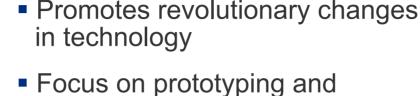
Homeland Security Act of 2002

HSARPA will....

"Support basic and applied homeland Security research to promote revolutionary changes in technologies; advance the development, testing and evaluation, and deployment of critical homeland security technologies; and accelerate the prototyping and deployment of technologies that would address homeland security vulnerabilities."

EVERY TRULY GREAT ACCOMPLISHMENT IS AT FIRST

(FORTUNE COOKIE)


IMPOSSIBLE!

Innovation Portfolio

High Risk, High Gain, Game Changers for Leap-Ahead Results

deploying critical technologies Includes:

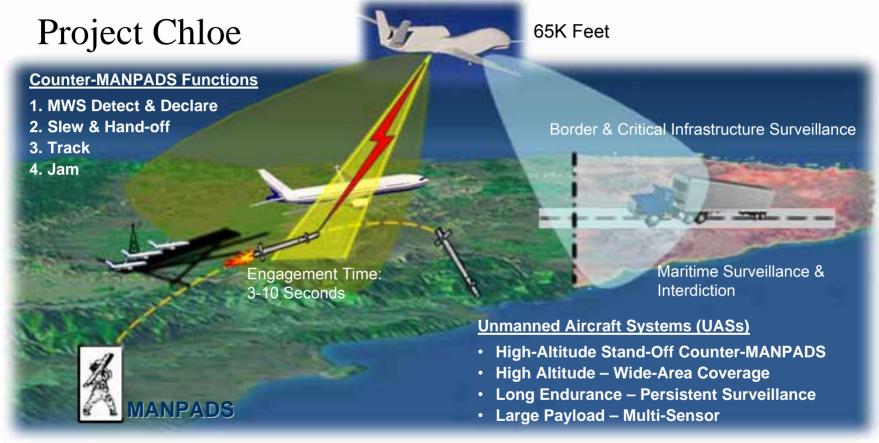
- "Homeworks" 1% of budget highest risk, highest pay-off
- Small Business Innovation Research program
- Visit www.FedBizOpps.gov, www.hsarpabaa.com and www.dhssbir.com

Innovation/HSARPA

HIPS and HITS

Homeland Innovative Prototypical Solutions (HIPS) are designed to deliver *prototype-level demonstrations* of game-changing technologies in two to five years. Projects are moderate to high risk, with high payoff.

High Impact Technology Solutions (HITS) are designed to provide *proof-of-concept* answers within one to three years that could result in high-payoff technology breakthroughs. While these projects are at considerable risk for failure, they offer the potential for significant gains in capability.

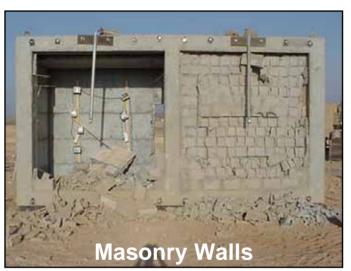

Homeland Innovative Prototypical Solutions (HIPS)

Explosives	Chem/Bio	Command, Control & Interoperability	Borders/ Maritime	Human Factors	Infrastructure/ Geophysical
Project Chloe- High altitude aerial platform existing above civil aviation Counter-MANPADS SENSIT — System to identify numerous liquids in baggage IED Defeat / APE VBIED Defeat — Detection/prevention and mitigation technologies to counter IEDs		SCOPE (Scalable Common Operational Picture Experiment) – Leverages Global Observer JCTD	Scalable Composite Vessel Prototype (SCVP) – Lightweight, composite material with high speed hull SAFECON – 90 second container screening device	FAST M2 (Future Attribute Screening Technology Mobile Module) – Relocatable Lab capable of testing for behavioral/ physiological cues of "hostile intent" Double or triple wide trailer tested at various sites around the country	Resilient Electric Grid – System that will prevent cascading effects of power surge on electrical grids Levee Strengthening and Rapid Repair - rapidly stop a breach in a levee Storm Surge and Hurricane Mitigation

High Impact Technology Solutions (HITS)

			`	,
Real Time Bio Detection and Identify Cell-All - Ubiquitous Chem/Bio/agent detector	First Net - First Responder Reliable Relay Link Phone Home – Inter-operative and inexpensive hand- held radios	Tunnel Detect – Ability to detect, identify, and confirm illegal and clandestine underground border structures and activities	Document Validator –High proficiency scanner that can identity fraudulent docs Leverage USSS system Biometric Detector – High proficiency small biometric scanner	Wide Area Surveillance/ Change Detection for Critical Infrastructure Resilient Tunnel— Tunnel Protection/Blast Mitigation

Homeland Innovative Prototypical Solutions Counter-MANPADS/Persistent Surveillance


Operational Characteristics

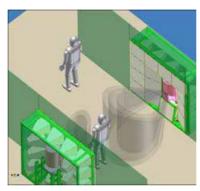
- · Real-time sensor fusion/dissemination
- Multi-user / border surveillance requirements
- · Commercial Aircraft MANPADS protection

- Automatic target detection/recognition
- Persistence (24/7, all-weather coverage)

High Innovative Prototype Solutions Improvised Explosive Devices Defeat

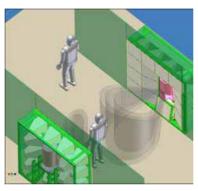
Explosive Resistant Coating

- Puffers for explosives trace material detection on people, bags/parcels, and vehicles
- Walk-through/whole-body imaging (e.g., backscatter)
- Advanced Protection Explosive (APE): cancellation methods for explosive shock waves
- Drive-through imaging technology (x-ray, neutron of materials only)



Predict, Detect, Defeat and Destroy
IED/VBIED at range (100 yards) to change the
calculus of the bomber versus the defender 13

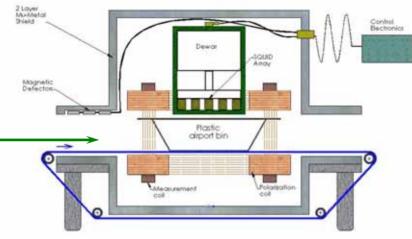
Homeland Innovative Prototype Solutions


Technologies for Suicide Bomber Defeat & Blast Mitigation

Suicide Bomber & Device Detection

Blast Mitigation

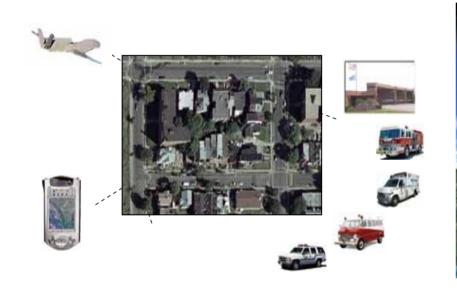
Explosive Device Deactivation



Homeland Innovative Prototypical Solutions

SENSIT

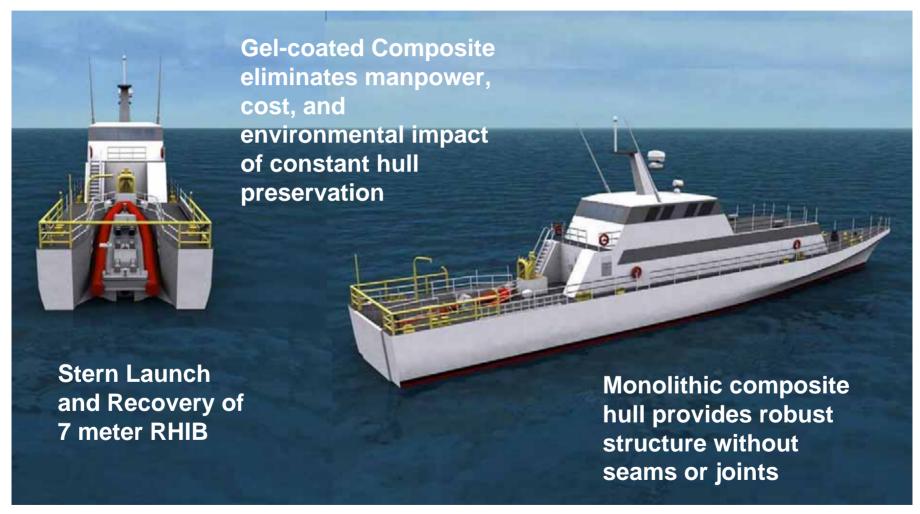
Liquid & Solid Explosive Detection at Ultra-Low Field *without radiation*



Magnetic Resonance Technology

- Detect Liquid & Solid Explosives
- Detect Explosive Components
- Simple "Green" / "Yellow" / "Red" alerts
- Non-contact
- Extremely sensitive
- Materials remain inside baggage
- Applicable at any security portal

Homeland Innovative Prototypical Solutions Scalable Common Operating Picture Experiment JCTD



Homeland Innovative Prototypical Solutions

Scalable Composite Vessel Prototype

Homeland Innovative Prototypical Solutions

SAFECON

Homeland Innovative Prototype Solutions

Future Attribute Screening Technology Mobile Module (FAST M2)

Systems

- Queue management
- Behavioral profiling
- · Rapid risk assessment
- Screening methodologies

Operational Characteristics

- Discover screening methods for intent
- Privacy protection for all participants
- •Simple to operate and use

Functions

- · Identity verification
- Attribute measurement
- Risk determination
- · Behavior focused screening

Homeland Innovative Prototypical Solutions


Levee Strengthening and Rapid Repair

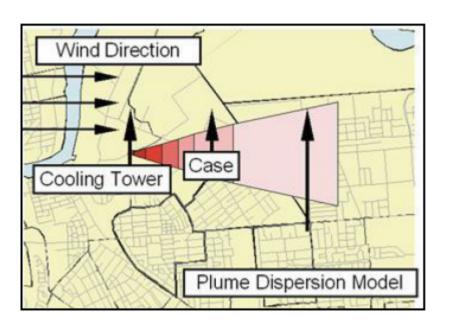
Pre-emptive mapping of weak levees

Pre-Flood Deployment of Protective And Rapid Repair Supplies to Problem Locations

Drop-in structures lofted by aircraft

Float-in structure guided by cables

Explosively Emplaced Support Structures


Roll-out protective coverings such as articulated concrete mats

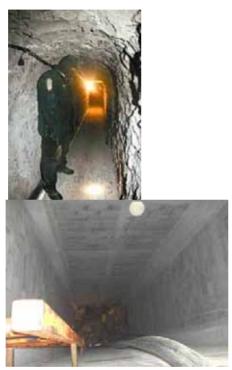
High Impact Technology Solutions Real Time Bio Detect

Systems to detect biological agents in less than 60 seconds, and then provide RF information transfer to various centers for decision making and corrective action.

VS

Detection via cell culture

Security


High Impact Technology Solutions First Net

Tunnel Detection

- Electricity
- Concrete infrastructures

Document Validator

- •Immigration Control
- Queue Management
- Identity databases

Functions

- Document Validation
- Identity verification
- •Global identity awareness

Biometric Detector

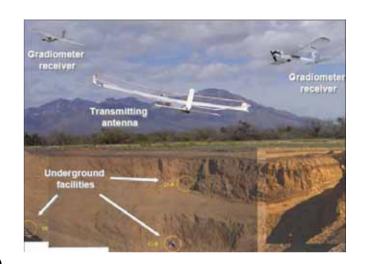

Functions

- Identity verification
- Denies right of passage to those on watch lists
- •Mobility allows for use in remote locations
- •Improved movement of legitimate individuals through checkpoints

High Impact Technology Solutions Cell-All Ubiquitous Chem/Bio Detect

Critical Infrastructure Change Detection

Explore Methods to


Densely Populated Urban Environments

Innovation/HSARPA BAAs

Broad Agency Announcements Released February 1:

- Tunnel Detection Technologies develop and demonstrate a capability for rapidly detecting tunnels
- SAFE Container (SAFECON) develop the capability to detect and identify WMD, explosives and contraband cargo and to detect humans in shipping containers
- Future Attribute Screening Technology (FAST) Demonstration Laboratory – provide efficient, rapid and accurate security screening of people and their credentials and belongings

Visit <u>www.FedBizOpps</u>.gov or www.hsarpabaa.com for more information

Upcoming BAA Topic Areas

- Long-Range Varied S&T Topic Areas
- CHLOE High Altitude Endurance Unmanned Aerial System-Based Counter-MANPADS Technology Assessment
- IED & Vehicle-Borne IED Defeat Technologies for Blast Mitigation and Suicide Bomber Defeat
- SBIR Small Business Innovation Research Program
- First NET First Responder Reliable Link
- Document Validator
- Biometric Detector
- SCOPE: Scalable Common Operating Environment

Visit <u>www.FedBizOpps</u>.gov or www.hsarpabaa.com for more information

DoD-DHS Technology Transfer

- Identify and transfer technology from DoD to homeland security applications for emergency responders
- Create a coordinated, sustainable, iterative and inclusive process for tech transfer
- Leverage innovation and investments
- Promote agency and first responder awareness of process

S&T Directorate's A/P Liaison

- Gary Jensen, Director, Asia-Pacific Liaison
- DHS Science & Technology Directorate
- 26 years experience in the Pacific Region
- Established first Mid-Pacific Office for Naval Research
- Coordinated Pacific Region International Field Offices for ONR
- Contact:
 - gary.jensen@dhs.gov
 - Phone: 808-474-1240

S&T Activities in PACASIA

Government to Government Agreements

- An existing umbrella S&T agreement with the Government of Australia,
- An umbrella S&T agreement in progress with the Government of Singapore
- Ongoing collaborations with both industry and government in Japan to test cargo container tracking devices under realworld operational conditions.
- Plans to expand this cargo security initiative to Singapore as soon as our S&T agreement is in place.

S&T Focus in PACASIA

- Needs of our customers
 - > Chemical and biological countermeasures and forensics;
 - > Behavioral and physiological tools for people screening; and
 - > Cargo tracking and inspection systems.
- Capitalize on the environment and challenges for innovative and leap-ahead capabilities in support of DHS missions and to save American lives. These include
 - Investigating emergency responder tools used by the Japanese government in response to earthquakes
 - Developing satellite-based tsunami forecasting capabilities with our partners in Naval Research
 - Developing hurricane intensity prediction approaches in partnership with the Office of Naval Research and the Mexican Navy
 - Maritime domain awareness and port security tools in partnership with Naval Research, TSWG, and allies such as Singapore.

It's ALL about the 'Human Element'!

Dow's "Human Element" Ad

FROM SCIENCE...SECURITY

Command, Control, & Interoperability

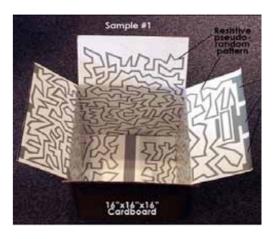
Infrastructure/Geophysical

FROM TECHNOLOGY...TRUST

Back-Up

S&T Points of Contact

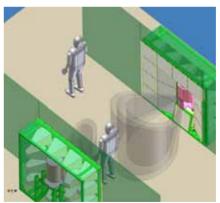
Division	Email
Jim Tuttle	S&T-Explosives@dhs.gov
John Vitko	S&T-ChemBio@dhs.gov
David Boyd	S&T-C2I@dhs.gov
Dave Newton	S&T-BordersMaritime@dhs.gov
Sharla Rausch	S&T-HumanFactors@dhs.gov
Chris Doyle	S&T-InfrastructureGeophysical@dhs.gov
Bob Hooks	S&T-Transition@dhs.gov
Starnes Walker	S&T-Research@dhs.gov
Roger McGinnis	S&T-Innovation@dhs.gov
Lil Ramirez	S&T-InternationalPrograms@dhs.gov


Border Security: Representative Technology Needs

- Improved ballistic protection via personal protective equipment (Borders/Maritime Division Lead)
- Improve detection, tracking, and identification of all threats along the terrestrial and maritime border (Borders/Maritime Division Lead)
- Ability to access ICE databases in which voice information is entered; provide analytical, reporting, and automated case deconfliction; classify, identify voice samples (C21 Division)
- Non-lethal compliance measures for vehicles, vessels, or aircraft allowing for safe interdiction by law enforcement personnel (Borders/Maritime Division Lead)
- Non-destructive tools that allow for the inspection of hidden or closed compartments to find contraband or security threats (Borders/Maritime Division Lead)
- Improved analysis and decision-making tools that will ensure the development/implementation of border security initiatives (Borders/Maritime Division Lead)
- Ability to non-intrusively determine the intent of subjects during questioning (Human Factors Division)
- Ability for law enforcement personnel to quickly identify the origin of gunfire and classify the type of weapon fired (Borders/Maritime Division Lead)
- Ability for law enforcement officers to assure compliance of lawful orders using non-lethal means (Borders/Maritime Division Lead)

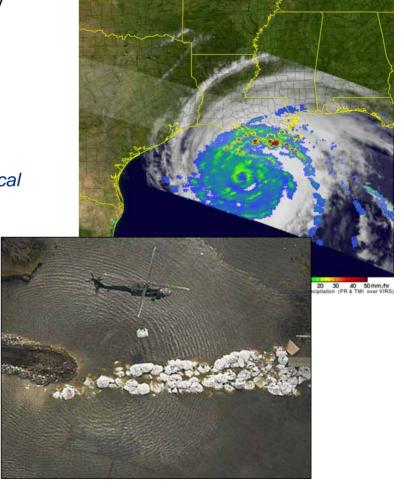
Cargo Security: Representative Technology Needs

- Enhanced screening and examination by non-intrusive inspection (Borders/Maritime Division)
- Increased information fusion, anomaly detection, Automatic Target Recognition capability (Borders/Maritime Division)
- Detect and identify WMD materials and contraband (Borders/Maritime Division)
- Capability to screen 100% of air cargo (Borders/Maritime Division)
- Test the feasibility of seal security; Detection of intrusion (Borders/Maritime Division)
- Track domestic high-threat cargo (Borders/Maritime Division)
- Harden air cargo conveyances and containers (Borders/Maritime Division)
- Positive ID of cargo & detection of intrusion or unauthorized access (Borders/Maritime Division)



Explosives Prevention: Representative Technology Needs

- Standoff detection on persons (portable solutions)
 (Explosives Division)
- System solution for detection in baggage (checked & carried) (Explosives Division)
- Capability to detect VBIED / large threat mass (container, trailer, ship, vessel, car, rail) (Explosives Division)
- Capability to detect homemade or novel explosives (Explosives Division)
- Capability to assess, render safe, and neutralize explosive threats (Explosives Division)
- Optimize canine explosive detection capability (Explosives Division)



Incident Management: Representative Technology Needs

- Integrated Modeling, Mapping and Simulation capability (IP/Geophysical Division)
- Personnel Monitoring (Emergency Responder Locator System) capability (IP/Geophysical Division)
- Personnel Monitoring (Physiological Monitoring of Firefighters) capability (IP/Geophysical Division)
- Incident Management Enterprise System (IP/Geophysical Division)
- Logistics management tool (IP/Geophysical Division)

Interoperability: Representative Technology Needs

- Development and evaluation of Internet Protocol (IP) enabled backbones (C21 Division)
- Test and evaluation of emergent wireless broadband data systems (C21 Division)
- Acceleration of development and testing of P25 IP-based interfaces (C21 Division)
- Identification and development of message interface standards (C21 Division)
- Transition of Land Mobile Radios communication architectures to cellular based architectures (C21 Division)
- Evaluation of access technologies (C21 Division)
- Development of the complementary test procedures (C21 Division)

Maritime Security: Representative Technology Needs

- Wide-area surveillance from the coast to beyond the horizon; port and inland waterways region - detect, ID, and track (Borders/Maritime Division Lead)
- Data fusion and automated tools for command center operations (Borders/Maritime Division Lead)
- Vessel compliance through non-lethal compliance methods (Borders/Maritime Division Lead)
- Enhanced capability to continuously track contraband on ships or containers (Borders/Maritime Division)
- Improved ballistic personal protective equipment for officer safety (Borders/Maritime Division Lead)
- Improved WMD detection equipment for officer safety; improved screening capability for WMD for maritime security checkpoints (Borders/Maritime Division Lead)

People Screening: Representative Technology Needs

- Systematic collection and analysis of information related to understanding terrorist group intent to engage in violence (Human Factors Division)
- Non-invasive monitoring: Identifying and tracking unknown or potential threats from individuals at key checkpoints. Real-time detection of deception or hostile intent through integrated system of human and machine methods (Human Factors Division)
- Capability in real-time for positive verification of individual's identity utilizing multiple biometrics (Human Factors Division)
- Capability for secure, non-contact electronic credentials; contactless readers or remote interrogation technologies for electronic credentials (Human Factors Division)
- Mobile biometrics screening capabilities, to include hand-held, wireless, and secure devices (Human Factors Division)
- High-speed, high-fidelity ten-print capture capability (Human Factors Division)

2007 HOMELAND SECURITY S&T Stakeholders CONFERENCE

May 21-24, 2007

Ronald Reagan Building Washington, D.C.

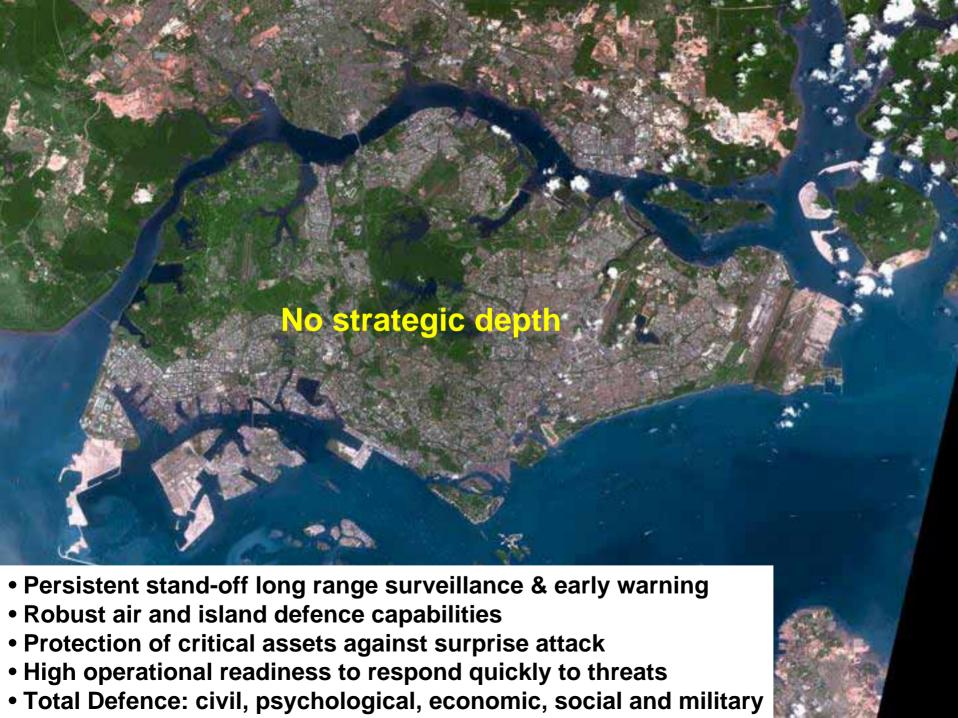
2007 S&T Stakeholders Conference Washington, DC

For more information visit: http://www.ndia.org/meetings/7680

> Coming Up... DHS S&T Conference London - Dec. 4, 2007 Details to follow

Security challenges from the perspective of a small city state

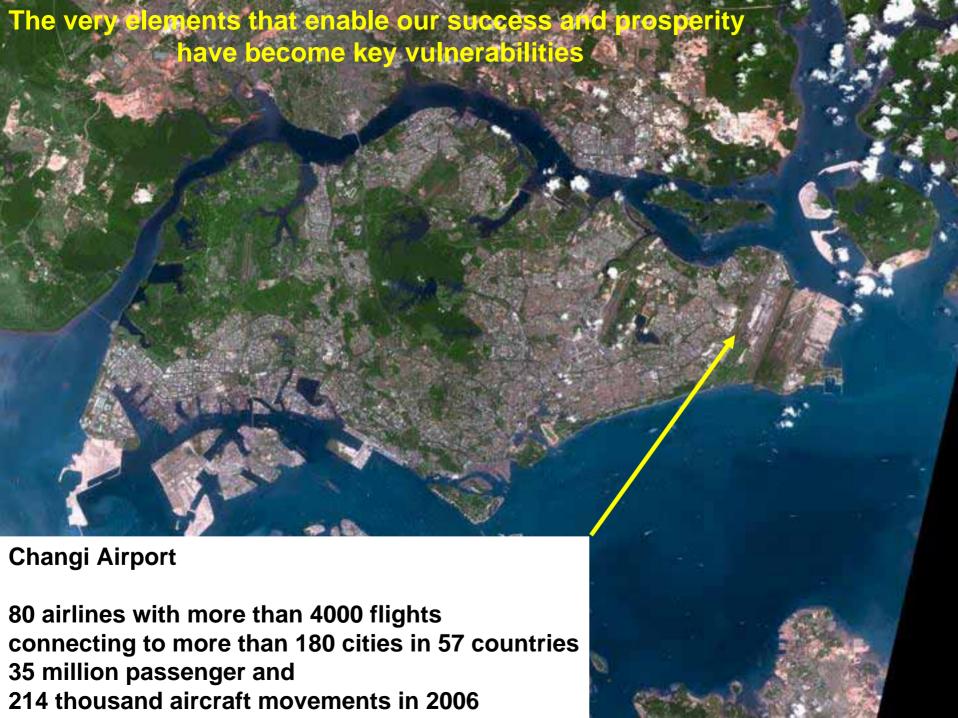
PACOM Operational S&T Conference 2007 3 Apr 2007


Richard Lim, Rear Admiral (Retired) RSN Chief Executive

Defence Science and Technology Agency

Conscript Armed Forces

Two years of national service 300.000 when mobilised



Limited space for military training

Overseas Training

SINGAPORE ARMED FORCES

While architected for deterrence and the defence of Singapore, the SAF has found itself deployed for various operations other than war

Peace Support Operations

- Singapore is committed to the UN and its mission in maintaining international peace and security
- 1500 SAF peacekeepers sent to various missions since 1989
- Operating out of traditional areas
 - East Timor
 - Middle East: Iraq and Afghanistan

Participation in UN PSO

UN Mission	Date	Role(s) in Mission
UNTAG, Namibia	Oct to Nov 89	Election Supervisors
Ops Nightingale	Jan to Mar 91	Medical Team
UNIKOM, Iraq-Kuwait	Apr 91 to Mar 03	Military Observers
UNAVEM II, Angola	Jul 91 to Dec 92	Military Observers
UNTAC, Cambodia	May to Jun 93	Helicopter Detachment, Election Supervisors
UNOMSA, South Africa	Apr to May 94	Election Supervisors
UN HQ - DPKO, New York	Nov 95 to Present	Appointments in DPKO
UNSCOM (UN Special Commission in Iraq)	Jun 96	Member of UN Special Commission Inspection Team
MINUGUA, Guatemala	Feb to May 97	Medical Team
UNSMA, Afghanistan	May 97 to May 98	UN Military Adviser
International Force for East Timor (INTERFET)	20 Sept 99 to Feb 00	Medical Team, Military Liaison Teams
UN Transitional Administration in East Timor (UNTAET)	Feb 00 to May 02	UNTAET HQ Staff, Medical teams and Peacekeeping troops
UN Mission in Ethiopia and Eritrea (UNMEE)	May 00 to Jul 03	Military Observers
UN Mission of Support in East Timor (UNMISET)	May 02 to 22 Oct 03	Force Commander, UNMISET HQ staff, Peacekeeping troops and Helicopter detachment 3 SAF PKF HQ Staff remain till May 04

Timor Leste

INTERFET

- 4- men Liaison Team
- 3 x LST for 2 months each
- 1 x C130 for two weeks
- 26- personnel Medical Team
- 40 police personnel
- Cumulative total of 373 personnel involved

UNTAET

- 4 x PKO HQ staff,
- 3 x 61-men Platoon Task Force in Western Sector
- 9 x 21-men Medical Team
- 40 x Police Personnel

UNMISET

- May 02 onwards Over 250 personnel
- Force Comdr UNMISET- PKF
- Staff Planners at PKF HQ
- Helicopter Detachment 4 x UHIH
 - Infantry Company

OEF / OIF

LST

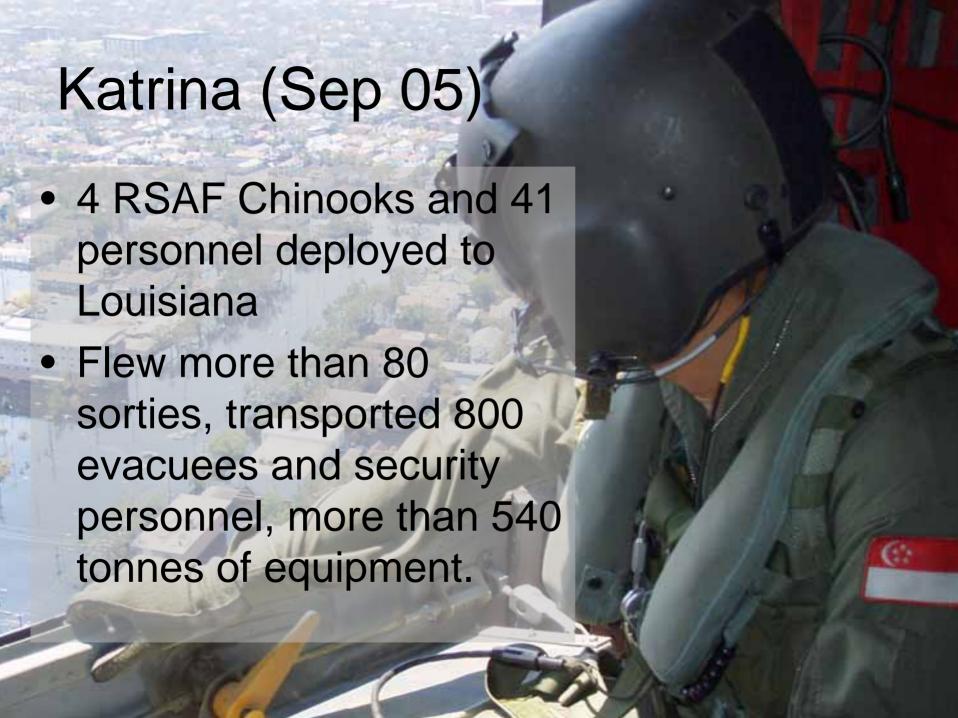
KC-135

C-130

Landing Ship Tank (LST)

- Monitor vessels to and from ports in Iraq
- Compliant boarding operations
- Health and comfort support to detained vessels
- Platform support for helicopter operations
- Guardship duties

KC-135


Air-to-air refuelling

C130

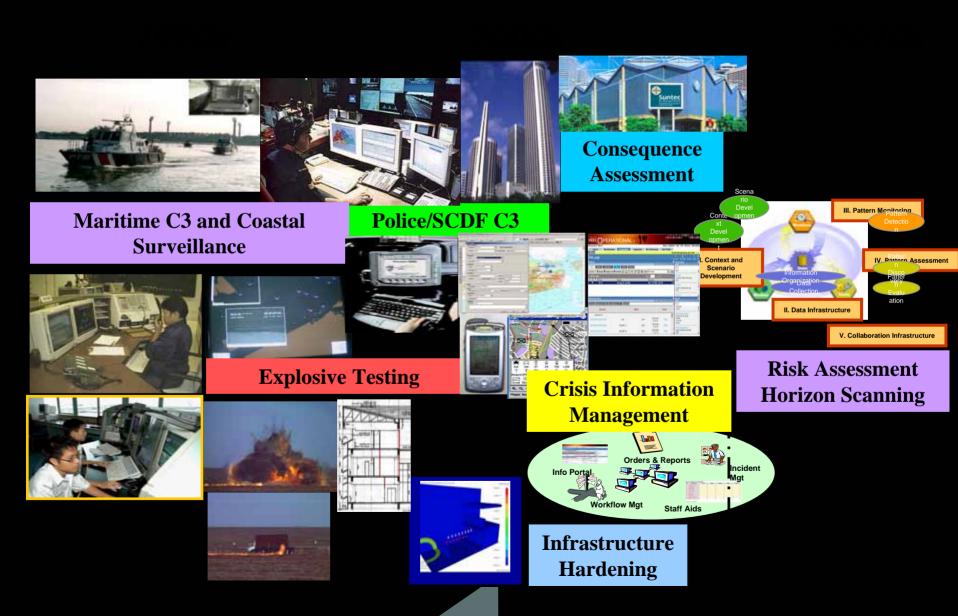
- Strategic lift for personnel and cargo
- Aeromedevac

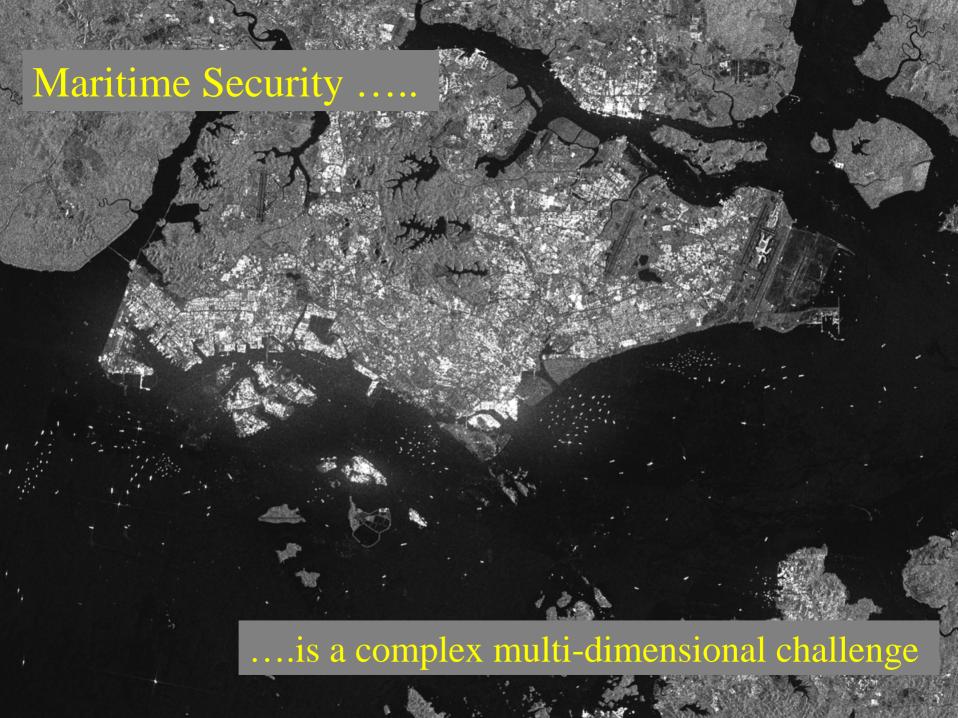
Indian Ocean Tsunami

Yogyakarta Earthquake

(27 May 06)

- Medical detachment deployed
 - TNI Field Hospital in Plered, Bantul
 - Bantul District Hospital
- US\$250,000 worth of humanitarian supplies (approx 24 tons)
 - 750 tentages
 - 4,200 blankets
 - 400 cot beds
 - 1,300 sleeping bags
 - Medical supplies




Provincial Reconstructive Team

Bamiyan, Afghanistan

- Part of New Zealand Reconstruction Team
- Set up of dental clinic & training of locals in dentistry and basic healthcare
- Bridge construction and repair work

Support for Homeland Security

EARLY WARNING - PREVENTION

CONTINGENCY RESPONSE

Providing Decision Support

Enabling Maritime Domain Awareness

Enabling Inter-Agency & International Collaboration

Improving the Resilience of Critical National Infra & Systems

Countering the use and proliferation of WMD

Ensuring End-to-End Maritime Supply Chain Security

EARLY WARNING - PREVENTION

Providing Decision Support

 Vulnerability and risk assessments of critical infrastructure


PROTECTION

CONTINGENCY RESPONSE

CONSEQUENCE MANAGEMENT

Enabling Maritime Domain Awareness

Video mosaic

PROTECTION

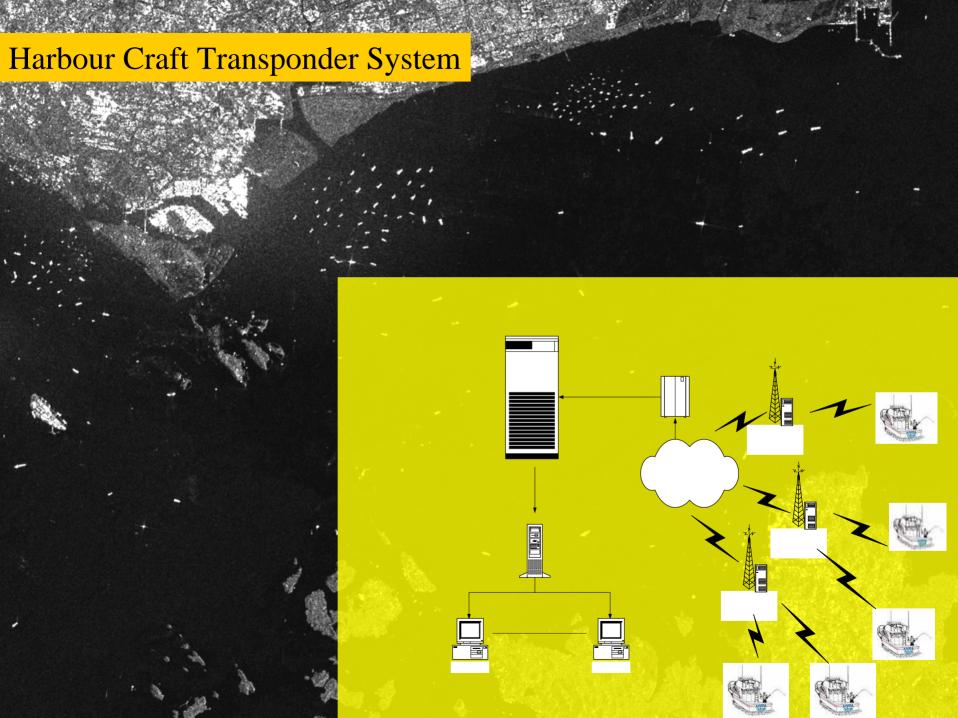
CONTINGENCY RESPONSE

Enabling Maritime Domain Awareness

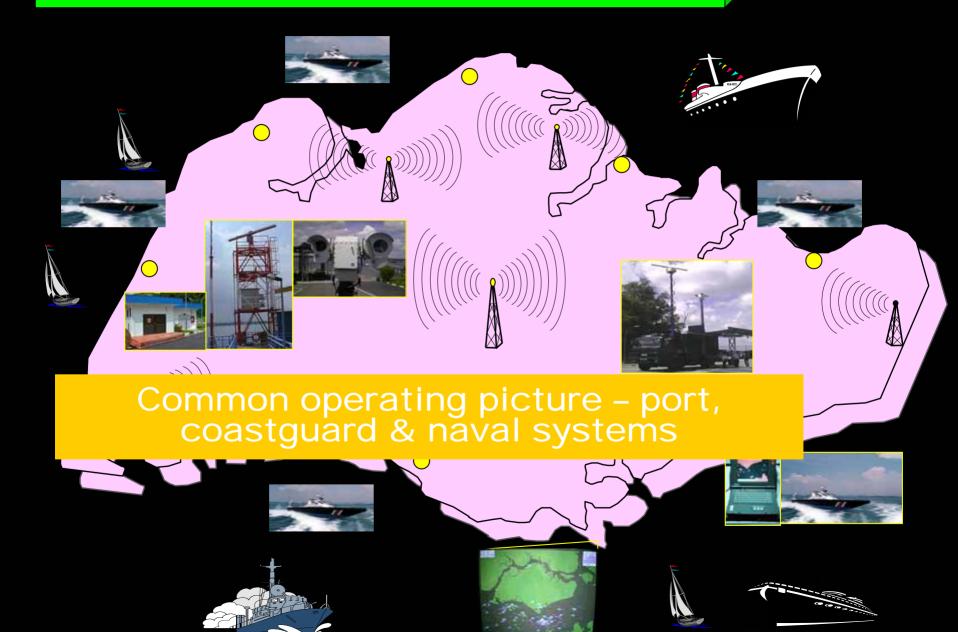
Passive mode

Distance 750 m

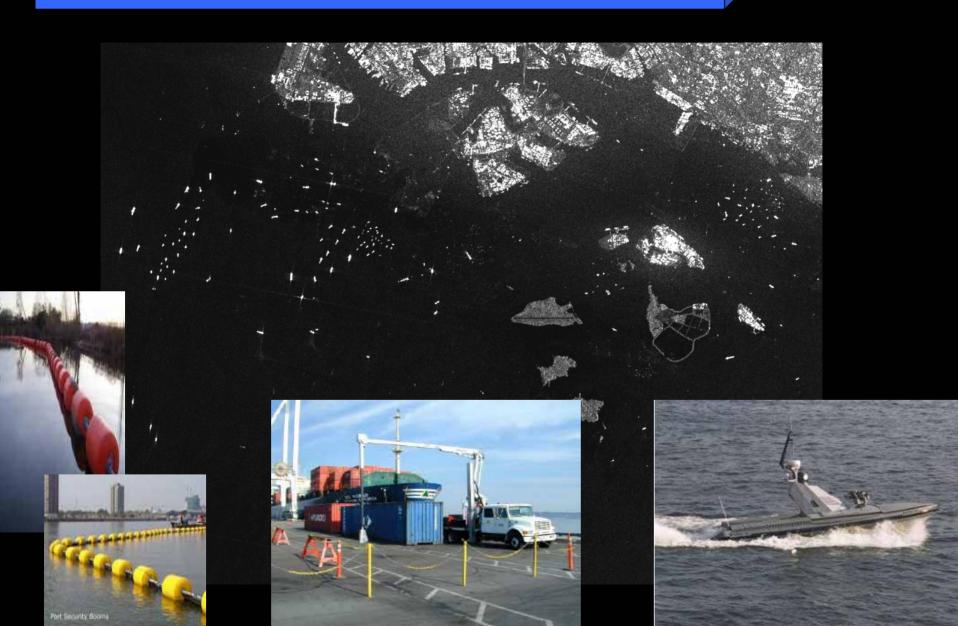
Laser on


CONSEQUENCE MANAGEMENT

Distance 1.4 km



Active imaging



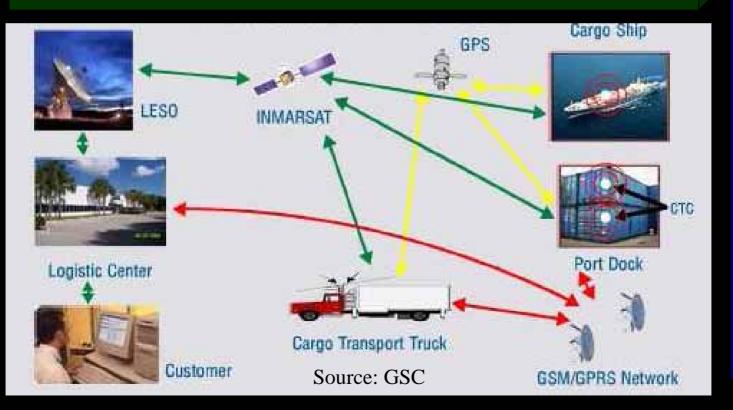
Enabling Inter-Agency & International Collaboration

Enhancing Resilience of Critical National Infra & Systems

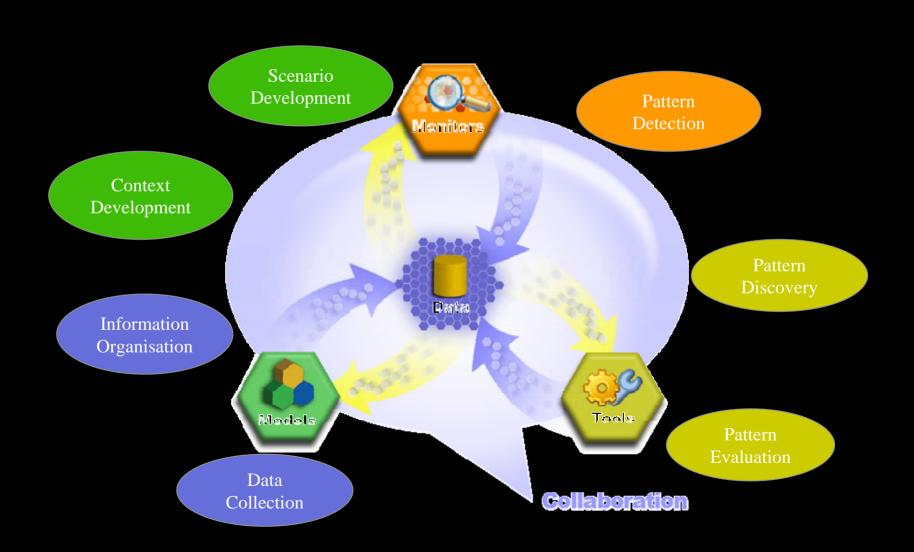
Enhancing Resilience of Critical National Infra & Systems

Explosive effects testing

CONSEQUENCE MANAGEMENT



PROTECTION


CONSEQUENCE MANAGEMENT

Ensuring End-to-End Maritime Supply Chain Security

Anticipating and preparing for disruptive events

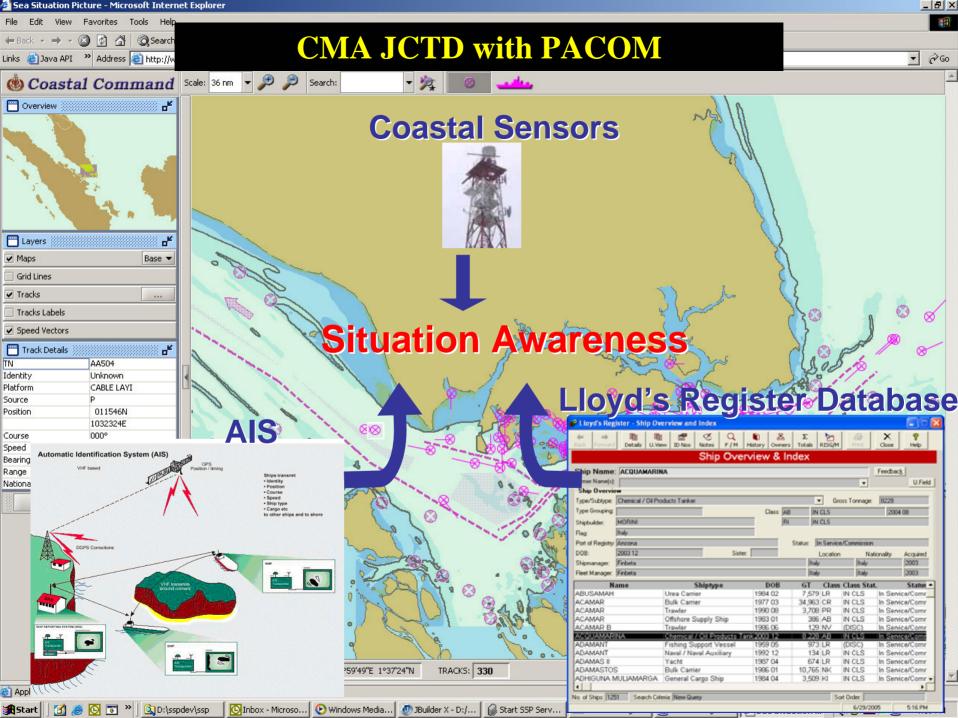
Risk Assessment & Horizon Scanning (RAHS)

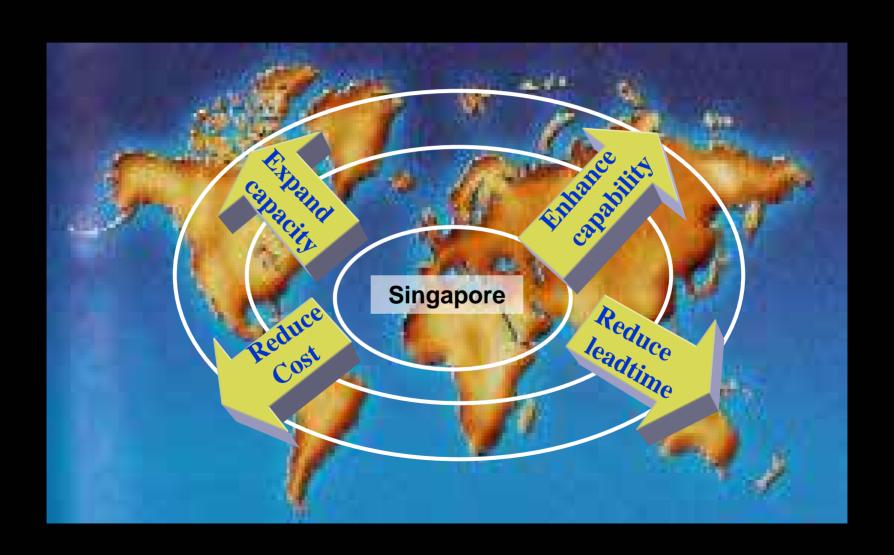
FPDA (Five Power Defence Arrangements)

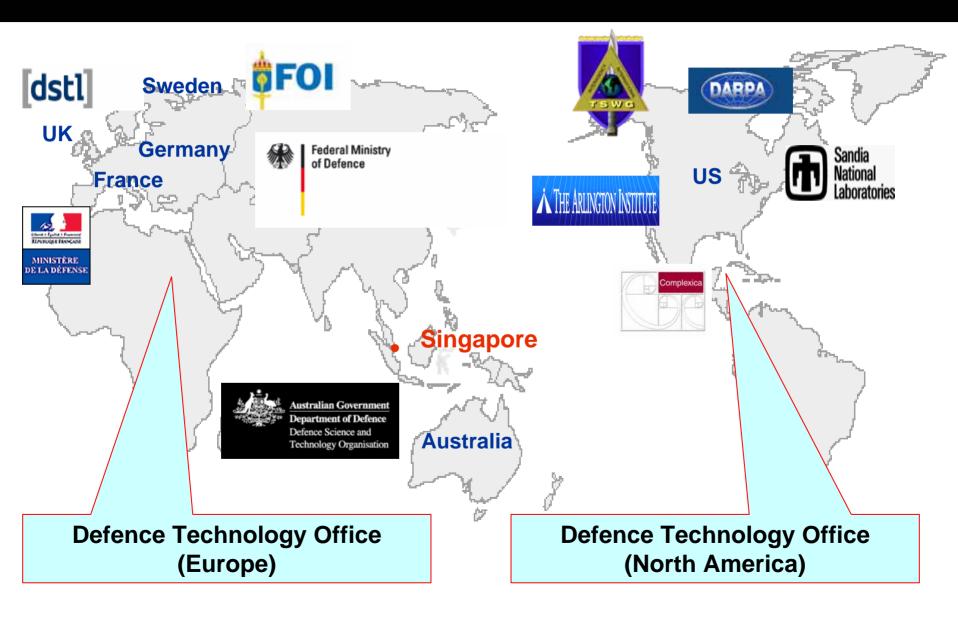
INDO-SIN Co-ordinated Patrols (ISCP)

Malacca Strait Patrols

- Malacca Strait Sea Patrols (MSSP)
- Eyes in the Sky (EiS)


Exercise Deep Sabre 05


- Singapore-hosted, first PSI exercise in Southeast Asia.
- Distinct Features:
 - Table Top Exercise (TTX)
 - Maritime Interdiction Operations
 - Combined Co-ordination Centre
 - Port Search Phase
 - Exercise Debrief Session


Technology Collaboration

Our S&T Partners

International Collaboration

Conclusion

- Singapore takes a systems level approach with technology as an enabler to meet the complex security challenges we face today
- Singapore participates in and seeks international collaboration to meet these challenges

Thank You

A Technological "Perfect Storm"?

For decades, Western militaries have held a decisive technological advantage...

"It is by devising new weapons, and above all by scientific leadership, that we shall best cope with the enemy's superior strength."

--Winston Churchill

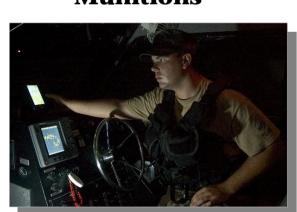
Today, enemies are able to acquire weapons and technology quickly and cheaply...

"Acquiring weapons for the defense of Muslims is a religious duty. If I have indeed acquired these weapons, then I thank God for enabling me to do so. And if I seek to acquire these weapons, I am carrying out a duty. It would be a sin for Muslims not to try to possess the weapons that would prevent the infidels from inflicting harm on Muslims."

--Osama bin Laden

And there also are nations willing to invest significantly in new technology...

"The 21st Century is also going to be an age of scientific change, with certain cuttingedge technologies likely to be applied to naval warfare...high-tech arms will make direct attacks on naval battlefields possible from outer space, remote altitudes and remote land bases...superconduction technology will bring superconductor ships to the naval order of battle, enabling ships to travel faster without noise...submarines will be able to go faster and deeper, with the seabed being the ideal place to build military bases."


-- Chinese Naval Officers at the Navy Research Institute in Beijing

Technological Dominance

Laser-Guided Munitions

GPS Navigation and Targeting

Today, Marines and Sailors have at their disposal the world's most sophisticated military technology

Mobile Communications

Network-Centricity, Information Warfare, and Intelligence

Technological Democratization

Internet— Information Warfare and Intelligence

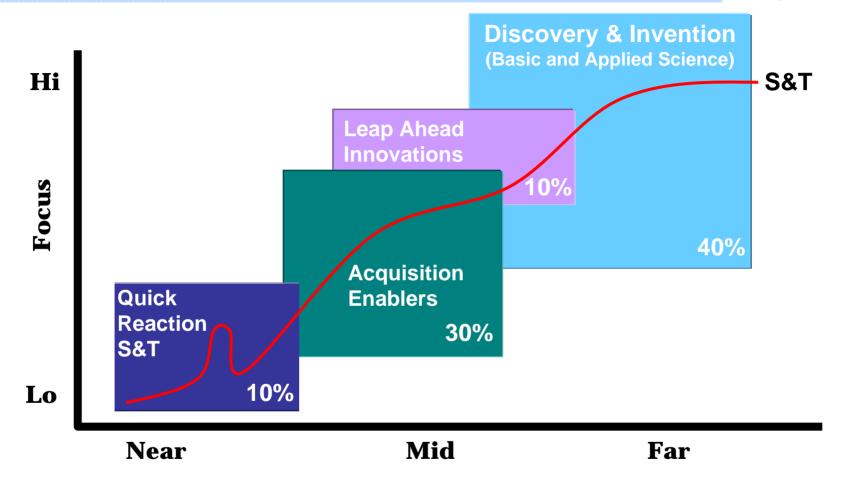
In Afghanistan, Iraq, and elsewhere, our adversaries are leveraging sophisticated technology that is now easily available anywhere in the world—and at modest cost.

Commercial Laser Rangefinder—Precise Targeting

Cell Phones— Mobile Comms

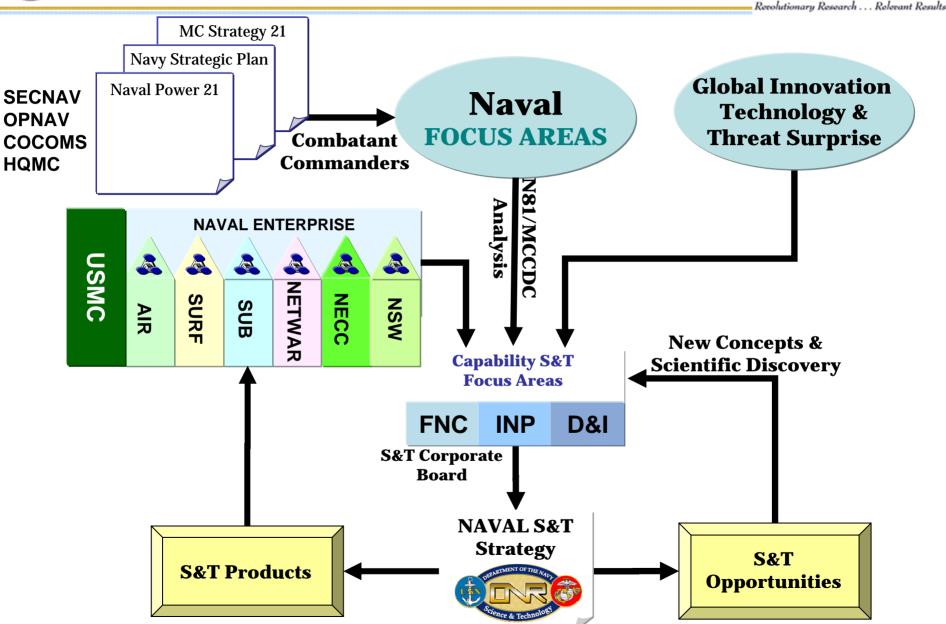
Handheld GPS— Location with Extreme Accuracy

S&T Strategy Objectives



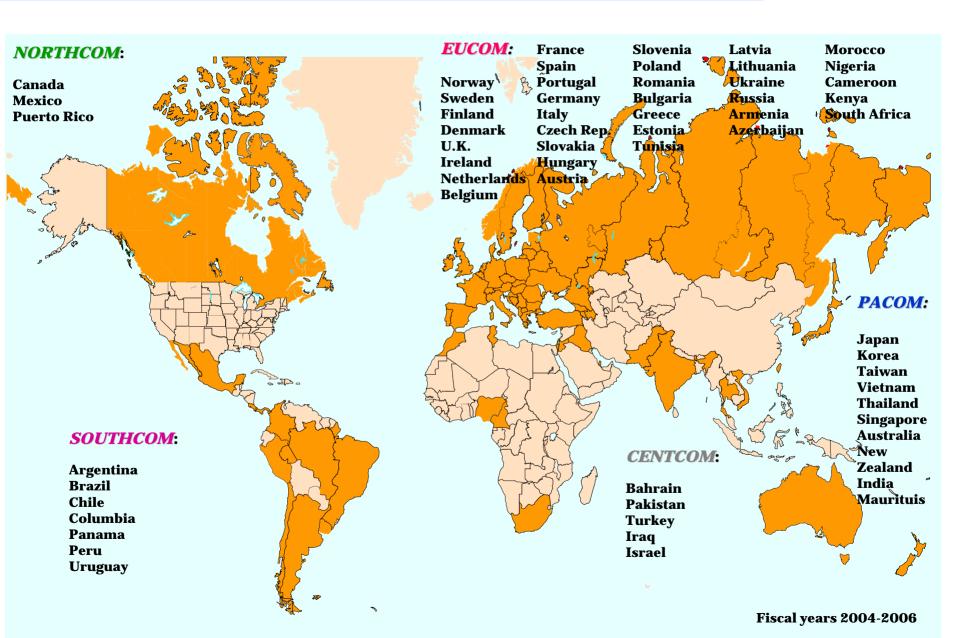
- Ensure alignment of Naval S&T with Naval missions and future capability needs
- Balance and manage S&T portfolio based on key tenets:
 - Strive to engage with intellectual capital worldwide
 - Leverage U.S. and global technology insights
 - Maintain equilibrium between long-term basic research and near-term advanced prototyping
 - Be innovative and adaptive—lead science where it is critical to the Navy/Marine Corps vision
 - Leverage technology development efforts across the entire DoD
- Communicate S&T vision and approach to senior decision makers, key stakeholders, S&T partners, customers, and performers

ONR S&T Portfolio Balance



S&T has a long-term focus but is responsive to near-term Naval needs

Naval S&T Strategy Process



International Engagement

Resulting Naval S&T Focus Areas

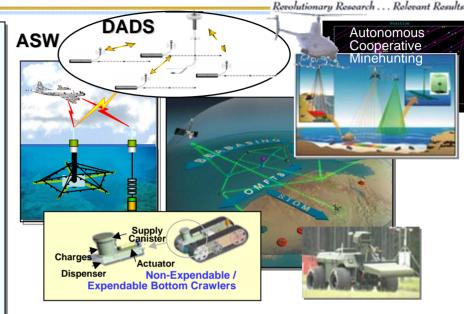
- Power and Energy
- Operational Environments
- Maritime Domain Awareness
- Asymmetric & Irregular Warfare
- Information, Analysis and Communication
- Power Projection
- Assure Access and Hold at Risk
- Distributed Operations
- Naval Warrior Performance and Protection
- Survivability and Self-Defense
- Platform Mobility
- Fleet/Force Sustainment
- Affordability, Maintainability, and Reliability

Assured Access and Hold at Risk

<u>Vision</u>: Attain maritime, littoral, and riverine access to denied areas and hold strategic and tactical targets at risk using lethal and non-lethal means.

Objectives

Anti-Submarine & Mine Warfare


- Rapid Clearing and detection of mines
- Advanced autonomy in unmanned robotic systems to expand ground reach and reduce threat exposure
- Next generation data and contact fusion to expand the regional ASW, mine & amphibious warfare operating picture to the theater level

Distributed Surveillance

- Distributed, networked surface, ground, and underwater sensors
- Unmanned systems with onboard processing
- Autonomous Maritime Reconnaissance/Neutralization

Battlespace Shaping

- Non-lethal technologies to stop small vehicles and large ships
- Battlespace shaping technology for enabling information operations
- Decisive operations through a heavy EW attack area
- Access in GPS denied areas Alternatives to GPS technology
- Operationally responsive use of space
- Tagging, Tracking, and Locating Technologies

Key Research Topics

Anti-Submarine Warfare Surveillance

Mine Hunting

Unmanned Vehicles

Intelligent and Autonomous Systems

Networked Sensors

Space Technologies

Nanoscale Electronic Devices & Sensors

Solid State Electronics

Functional Materials

EW - Attack

ISRT - EM

Large Vessel Stopping

Non-Lethal Weapons

Navigation and Precision-Timekeeping

Distributed Operations

<u>Vision</u>: Enable dispersed small units to dominate extended battlespace through advanced warfighter training, unambiguous situational awareness, robust communications and sense and respond logistics.

Objectives

Training

- Enhancement of Physical and Cognitive Performance
- Simulation based scenarios for enhanced training
- Rapid assimilation of cultural environments

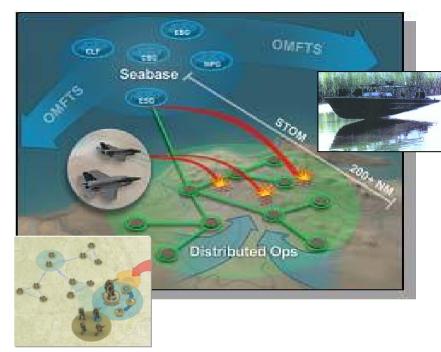
Communications

- Robust Command and Control networks
- Airborne relays on manned and unmanned platforms

Logistics

- Rapid re-supply and medical evacuation whenever possible
- Real-time automatic supply sensors and network
- Optimize medical self-sufficiency

Fires


- Integrate firepower of distributed ground, offshore, and air assets
- Blue Force Tracking down to the individual

Survivability

- · Warfighter stealth technology
- Warfighter exoskeleton technology

Maneuver

- Adaptable and survivable tactical mobility systems to enhance operational tempo and extend range of vehicles and soldiers
- Advanced materials to reduce combat load

Key Research Topics

Training, Education & Human Performance

Expeditionary C4

Communications and Networks

Expeditionary Logistics

Expeditionary Firepower

Precision Strike

Expeditionary ISR

Unmanned Air and Ground Vehicles

Special Warfare / EOD

Land Mine Countermeasures

Expeditionary Maneuver/ Individual Mobility

Survivability and Self-Defense

Revolutionary Research . . . Relevant Results

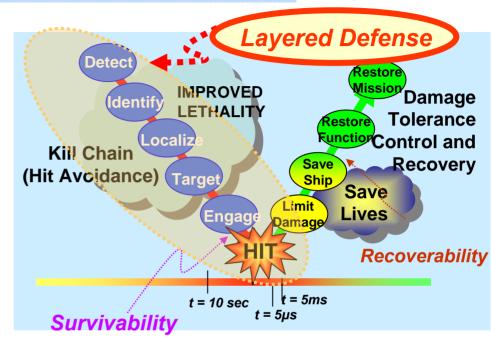
<u>Vision</u>: Enable manned and unmanned platforms to operate in any hostile environment and avoid/survive attack through innovative materials, sensors, countermeasures and counter-weapons.

Objectives

Platform Stealth

- · Reduce above water and subsurface signatures
- Multi-spectral LO technologies

Countermeasures & Counterweapons


- Threat weapon tracking
- Automated decision making
- Low False alarm rate 360 degree detection
- Hard kill and soft kill against threat kinetic weapons
- Increase standoff to outside threat damage range
- Directed energy weapons for speed of light engagement
- Counter-LO

Survivable Platforms

- Advanced materials in platform construction
- Damage tolerant platform architectures
- · Automated damage control focusing
- Advanced materials for self healing platforms

Force Protection

- Anti-swimmer technology
- Detect and determine threat intent
- Non-lethal response

Key Research Topics

Signature Control (LO/CLO)

Undersea Weaponry

Torpedo Defense

Directed Energy

Survivable Platforms Structures

Functional Materials

Electro-Optics

Solid State Electronics

EW Attack

ISRT - EM

Expeditionary Force Protection Non-Lethal Weapons

12

Pillar

Future Naval Capabilities

Products

Revolutionary Research . . . Relevant Result

The **Future Naval Capability** program is aligned with the pillars of Naval Power 21, and focuses on providing enabling capabilities to close warfighting gaps.

Examples of current (FY07) enabling capabilities and corresponding products in execution:

Enabling Capabilility

	FY05	FY06	FY07	FY08
Products in Execution	129	119	114	112
Product Transitions	31	27	48	24
Enabling Capability Transitions	5	3	10	11
Enabling Capabilities in Execution	36	37	39	48

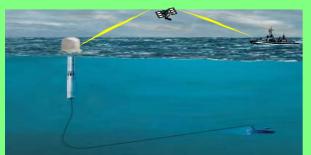
Sea Shield	Mine Countermeasures	Communications and Navigation Aids for MCM Operations, Buried Mine Sensor Development for Detection and Classification of Buried Sea Mines
	Over-the-Horizon Missile Defense	Distributed Weapons Coordination, Advanced Area Defense Interceptor, Distributed Sensor Coordination
	Defense of Harbor against Asymmetric Threats	Intelligent Video Surveillance, Underwater Threat Neutralization, Passive Acoustic
		Fiber-Optic Array for Swimmer Detection, Terminal Swimmer Detection and Targeting
Sea Strike	Advanced Naval Fires Technology	Adaptive Expeditionary Maneuver Warfare System, Advanced Fires Coordination Technology, Advanced Gun Barrel Technology, Advanced Target Acquisition
	Transparent Urban Structures Modular Scaleable Effects Weapons	Sensing Through Walls, Detect and ID Facilities, Decision Aids Scalable Effect Weapon Concept Development, Indirect Prototype (Scalable Effect)
Sea Basing	Sea Base Mobility and Interfaces	Small to Large Vessel At-Sea Transfer Sea Base Connector, High Speed Seabase-to- Shore Connector, High Rate Vertical / Horizontal Material Movement, High Lift Density Air
	Surface Connector Vehicle Transfer	Interface Ramp Technologies, Intra-Connector Material Handling
FORCEnet:	Marine and UxV Tactical ISR	Dynamic Replanning/Autonomous Vehicle Control, Fully Integrated Advanced Demonstrator Engine, Multi-Vehicle Cooperation / Targeting, Multi-Vehicle Networking / Comms Software
	Global Information Grid-Compliant Networking	High Altitude Airborne Relay and Router Package, Integrated, Autonomous Network Management,Intra-Battle Group Wireless Networking Block II
Enterprise/ Platform Enablers	Compact Power Conversion Technologies Maintenance Reduction Technologies	Multi-Function Motor Drive, BiDirectional Power Control Module, Power Management Controllers Improved Non-Skid Coatings, High Performance Topside Coatings, Improved High Ship Rudder Coatings

Making an Impact Today

Rovolutionary Rosearch . . . Relevant Results

Modular Hybrid Pier

Modular, double-deck pier constructed of new corrosion-resistant concrete


- Demonstrated in FY05
- Transitioned to P327/N46 in FY07

Next Generation Submarine Comms at Depth

Two-way comms support submarine comms at depth

- At sea test in late FY07
- •Transitions to PEO C4I PMW770 in FY08

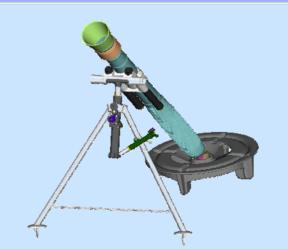
Intra-Battle Group Wireless Networking

High bandwidth, line-of-sight, wireless network within a battle group using existing advanced digital network system

- Block II transitioned to PMW160 in Dec 06
- Deployed on *John C. Stennis* strike group Jan 07

Lightweight Mortar System

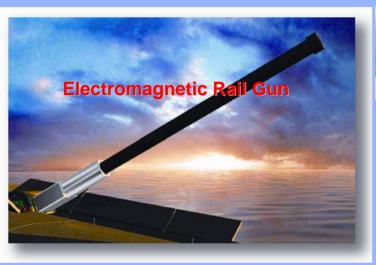
Developed lightweight 81mm and 60mm mortar tubes base plates, and bipod assemblies

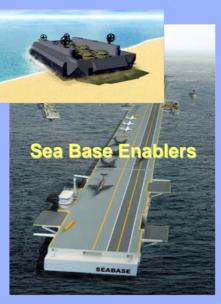

- Lightweight 81mm gun tube design transitioned FY06
- Lightweight 81mm bipod and base plate and 60mm mortar systems designs transitioned FY07

QuikClot

Hemostatic agent that almost instantaneously stops severe arterial bleeding

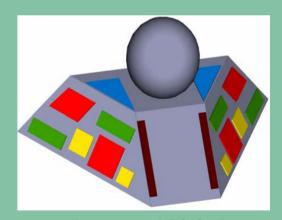
- Original product already in battlefield use with Marines
- FDA approval for Advanced Clotting Sponge expected in late FY07/early FY08



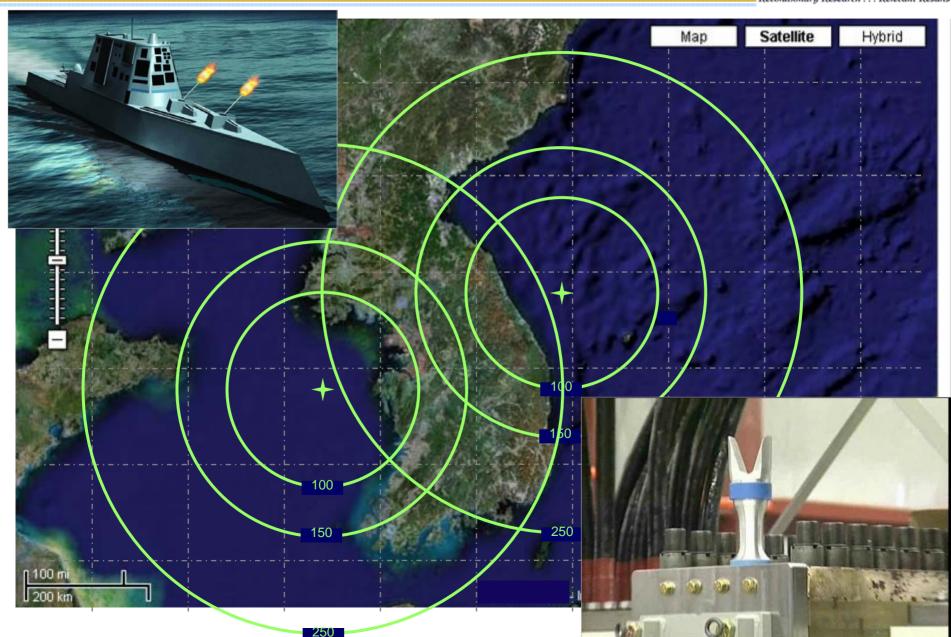


Innovative Naval Prototypes

Current INPs

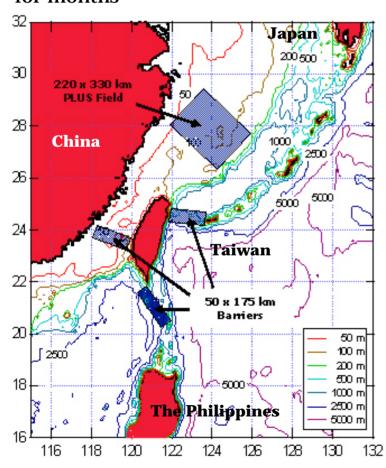


Potential INPs



Integrated Digital
Apertures and Array
Radars

Electromagnetic Rail Gun


Persistent Littoral Undersea Surveillance (PLUS)

Revolutionary Research . . . Relevant Result

Mission:

Hold-at-Risk ASW strategy requires effective undersea surveillance against multiple, quiet targets over large littoral areas (100 x 100 nm) for months

Game Changing

- Inverts ASW asymmetry using autonomous, mobile, controllable sensor/weapon network
- Adapts to environment, targets, and threats
- Persists clandestinely for months
- · Autonomous self deployment

Innovative Elements

- Autonomous, cooperative behavior among structured, mobile sensors (gliders, mobile scanning arrays, intervention units)
- Feedback control to meet operational detection thresholds
- Adaptive target closures yielding actionable kill chain

A Swiftly Changing Planet

- In an era of increasing globalization, new technology is more readily available—and more quickly—than ever before
- The natures of "combatant" and "weapon" are changing, and new challenges can come from anywhere in the world

- We must accept the fact that adversaries will use our technology against us
- To stay competitive on tomorrow's battlefields, we must:
 - **Ensure** our people and research enterprises are more innovative
 - **Maintain** our technological advantage

Questions?

If technology doesn't seem like magic—it's probably obsolete.